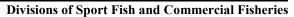
# **Goodnews River Salmon Monitoring and Assessment,** 2013


Final Report for Project OSM 10-300
USFWS Office of Subsistence Management
Fisheries Resource Monitoring Program

by

Davin V. Taylor

November 2014

**Alaska Department of Fish and Game** 





### **Symbols and Abbreviations**

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

| Weights and measures (metric)  |                    | General                  |                   | Mathematics, statistics        |                        |
|--------------------------------|--------------------|--------------------------|-------------------|--------------------------------|------------------------|
| centimeter                     | cm                 | Alaska Administrative    |                   | all standard mathematical      |                        |
| deciliter                      | dL                 | Code                     | AAC               | signs, symbols and             |                        |
| gram                           | g                  | all commonly accepted    |                   | abbreviations                  |                        |
| hectare                        | ha                 | abbreviations            | e.g., Mr., Mrs.,  | alternate hypothesis           | $H_A$                  |
| kilogram                       | kg                 |                          | AM, PM, etc.      | base of natural logarithm      | e                      |
| kilometer                      | km                 | all commonly accepted    |                   | catch per unit effort          | CPUE                   |
| liter                          | L                  | professional titles      | e.g., Dr., Ph.D., | coefficient of variation       | CV                     |
| meter                          | m                  |                          | R.N., etc.        | common test statistics         | $(F, t, \chi^2, etc.)$ |
| milliliter                     | mL                 | at                       | @                 | confidence interval            | CI                     |
| millimeter                     | mm                 | compass directions:      |                   | correlation coefficient        |                        |
|                                |                    | east                     | E                 | (multiple)                     | R                      |
| Weights and measures (English) |                    | north                    | N                 | correlation coefficient        |                        |
| cubic feet per second          | ft <sup>3</sup> /s | south                    | S                 | (simple)                       | r                      |
| foot                           | ft                 | west                     | W                 | covariance                     | cov                    |
| gallon                         | gal                | copyright                | ©                 | degree (angular )              | 0                      |
| inch                           | in                 | corporate suffixes:      |                   | degrees of freedom             | df                     |
| mile                           | mi                 | Company                  | Co.               | expected value                 | E                      |
| nautical mile                  | nmi                | Corporation              | Corp.             | greater than                   | >                      |
| ounce                          | OZ                 | Incorporated             | Inc.              | greater than or equal to       | ≥                      |
| pound                          | lb                 | Limited                  | Ltd.              | harvest per unit effort        | HPUE                   |
| quart                          | qt                 | District of Columbia     | D.C.              | less than                      | <                      |
| yard                           | yd                 | et alii (and others)     | et al.            | less than or equal to          | ≤                      |
| <b>y</b>                       | <i>y</i>           | et cetera (and so forth) | etc.              | logarithm (natural)            | ln                     |
| Time and temperature           |                    | exempli gratia           |                   | logarithm (base 10)            | log                    |
| day                            | d                  | (for example)            | e.g.              | logarithm (specify base)       | log <sub>2</sub> etc.  |
| degrees Celsius                | °C                 | Federal Information      | •                 | minute (angular)               | 1                      |
| degrees Fahrenheit             | °F                 | Code                     | FIC               | not significant                | NS                     |
| degrees kelvin                 | K                  | id est (that is)         | i.e.              | null hypothesis                | $H_0$                  |
| hour                           | h                  | latitude or longitude    | lat or long       | percent                        | %                      |
| minute                         | min                | monetary symbols         | C                 | probability                    | P                      |
| second                         | S                  | (U.S.)                   | \$, ¢             | probability of a type I error  |                        |
|                                |                    | months (tables and       |                   | (rejection of the null         |                        |
| Physics and chemistry          |                    | figures): first three    |                   | hypothesis when true)          | α                      |
| all atomic symbols             |                    | letters                  | Jan,,Dec          | probability of a type II error |                        |
| alternating current            | AC                 | registered trademark     | ®                 | (acceptance of the null        |                        |
| ampere                         | A                  | trademark                | TM                | hypothesis when false)         | β                      |
| calorie                        | cal                | United States            |                   | second (angular)               | "                      |
| direct current                 | DC                 | (adjective)              | U.S.              | standard deviation             | SD                     |
| hertz                          | Hz                 | United States of         |                   | standard error                 | SE                     |
| horsepower                     | hp                 | America (noun)           | USA               | variance                       |                        |
| hydrogen ion activity          | рH                 | U.S.C.                   | United States     | population                     | Var                    |
| (negative log of)              | r                  |                          | Code              | sample                         | var                    |
| parts per million              | ppm                | U.S. state               | use two-letter    | r                              |                        |
| parts per thousand             | ppt,               |                          | abbreviations     |                                |                        |
| r r r                          | %<br>%             |                          | (e.g., AK, WA)    |                                |                        |
| volts                          | V                  |                          |                   |                                |                        |
| watts                          | W                  |                          |                   |                                |                        |
|                                |                    |                          |                   |                                |                        |

# FISHERY DATA SERIES NO. 14-44

# **GOODNEWS RIVER SALMON MONITORING AND ASSESSMENT, 2013**

by

Davin V. Taylor Alaska Department of Fish and Game, Division of Commercial Fisheries, Anchorage

> Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1565

> > November 2014

This investigation was partially funded by U.S. Fish and Wildlife Service, Office of Subsistence Management (Project No. OSM 10-300), Fisheries Resource Monitoring Program under agreement number 70181AJ027.

ADF&G Fishery Data Series was established in 1987 for the publication of Division of Sport Fish technically oriented results for a single project or group of closely related projects, and in 2004 became a joint divisional series with the Division of Commercial Fisheries. Fishery Data Series reports are intended for fishery and other technical professionals and are available through the Alaska State Library and on the Internet: <a href="http://www.adfg.alaska.gov/sf/publications/">http://www.adfg.alaska.gov/sf/publications/</a> This publication has undergone editorial and peer review.

Davin V. Taylor Alaska Department of Fish and Game, Division of Commercial Fisheries, 333 Raspberry Road, Anchorage, AK 99518, USA

This document should be cited as:

Taylor, D. V. 2014. Goodnews River salmon monitoring and assessment, 2013. Alaska Department of Fish and Game, Fishery Data Series No. 14-44, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2375

# TABLE OF CONTENTS

|                                                                       | Page |
|-----------------------------------------------------------------------|------|
| LIST OF TABLES                                                        | _    |
| LIST OF FIGURES                                                       | ii   |
| LIST OF APPENDICES                                                    | ii   |
| ABSTRACT                                                              | 3    |
| INTRODUCTION                                                          | 3    |
| Salmon Fisheries                                                      | 3    |
| Subsistence Fisheries                                                 |      |
| Commercial Fisheries                                                  |      |
| Sport Fisheries                                                       |      |
| Project History                                                       |      |
| Escapement Monitoring and Escapement Goals                            |      |
| OBJECTIVESOBJECTIVES                                                  |      |
| METHODS                                                               |      |
|                                                                       |      |
| Site Description                                                      |      |
| Resistance Board Weir                                                 |      |
| Escapement Monitoring and Estimates                                   |      |
| Atmospheric and Hydrological Manitoring                               |      |
| Atmospheric and Hydrological Monitoring                               |      |
| Weir Operations                                                       |      |
| Salmon Escapement                                                     |      |
| Age, Sex, and Length Composition Estimates                            |      |
| Atmospheric and Hydrological Monitoring                               |      |
| DISCUSSION                                                            |      |
| Weir Operations                                                       |      |
| Escapement Monitoring and Estimates.                                  |      |
| Age, Sex, and Length Composition Estimates                            |      |
| RECOMMENDATIONS                                                       |      |
| ACKNOWLEDGEMENTS                                                      | 13   |
| REFERENCES CITED                                                      | 14   |
| TABLES AND FIGURES                                                    | 17   |
| APPENDIX A: HISTORICAL MIDDLE FORK GOODNEWS RIVER, ESCAPEMENT PROJECT |      |
| 2013                                                                  |      |

# LIST OF TABLES

| Table    | P                                                                                                                                       | age |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1        | Daily, cumulative, and cumulative percent passage of Chinook, sockeye, chum, and coho salmon at the                                     |     |
| 2        | Middle Fork Goodnews River weir, 2013.  Daily, cumulative, and cumulative percent passage of pink salmon and Dolly Varden at the Middle | 18  |
| 2        | Fork Goodnews weir, 2013.                                                                                                               | 21  |
| 3        | Age and sex composition and mean length of Chinook salmon escapement at the Middle Fork                                                 | 21  |
| J        | Goodnews River weir, 2013.                                                                                                              | 24  |
| 4        | Age and sex composition and mean length of sockeye salmon escapement at the Middle Fork Goodnews River weir, 2013.                      |     |
| 5        | Age and sex composition and mean length of chum salmon escapement at the Middle Fork Goodnews River weir, 2013                          |     |
| 6        | Age and sex composition and mean length of coho salmon escapement at the Middle Fork Goodnews River weir, 2013.                         |     |
| 7        | Daily weather and hydrological at the Middle Fork Goodnews River weir, 2013.                                                            |     |
| 1        | Commercial fishing District W-5, Kuskokwim Bay, Alaska.                                                                                 | 28  |
| Figure   | e P                                                                                                                                     | age |
| _        | Goodnews River drainage, Kuskokwim Bay, Alaska.                                                                                         |     |
| 2 3      | Historical Chinook, sockeye, chum, and coho salmon escapement estimates at the Middle Fork                                              | 29  |
| 3        | Goodnews River weir, 1981–2013.                                                                                                         | 30  |
| 4        | Annual run timing of Chinook and sockeye salmon based on cumulative percent passage at the Middle Fork Goodnews River weir, 1998–2013.  |     |
| 5        | Annual run timing of chum and coho salmon based on cumulative percent passage at the Middle Fork Goodnews River weir, 1998–2013.        |     |
| 6        | Historical Dolly Varden escapement estimate, 1981–2013, cumulative percent passage of Dolly                                             |     |
|          | Varden 2013, and historical median at the Middle Fork Goodnews River weir.                                                              | 33  |
|          | LIST OF APPENDICES                                                                                                                      |     |
| <b>A</b> |                                                                                                                                         |     |
| Appen    |                                                                                                                                         | age |
| A1       | Historical Middle Fork Goodnews River escapement projects, 1981–2013.                                                                   | 30  |

# **ABSTRACT**

Goodnews River is the primary salmon spawning drainage in the Goodnews Bay area and supports subsistence, commercial, and sport fisheries near the communities of Goodnews Bay and Platinum in Southwest Alaska. The Alaska Department of Fish and Game, in cooperation with the U.S. Fish and Wildlife Service, operates a resistance board weir to enumerate fish returning to Middle Fork Goodnews River. In 2013, the weir was in operation June 24 through September 2, and a total of 1,189 Chinook *Oncorhynchus tshawytscha*; 23,243 sockeye *O. nerka*; 28,091 chum *O. keta*; 530 pink *O. gorbuscha*; 23,702 coho salmon *O. kisutch*; and 5,163 Dolly Varden char *Salvelinus malma* were estimated to have passed through the weir. Flood waters resulted in an early end to project operations. A portion of the coho salmon run could not be monitored, but estimates of missed passage for September 2 through September 18 are included in the escapement total. The escapement of Chinook salmon at the weir was below the biological escapement goal range. Sockeye salmon escapement was within the biological escapement goal range, while chum and coho salmon exceeded their respective escapement goals. Overall, escapements for Chinook, sockeye, chum, and coho salmon were below average.

Key words Chinook, *Oncorhynchus tshawytscha*, chum, *O. keta*, coho *O. kisutch*, sockeye *O. nerka* and pink salmon, *O. gorbuscha*, Dolly Varden char *Salvelinus malma*, escapement monitoring, Goodnews River, Kuskokwim Area, Kuskokwim Bay.

# INTRODUCTION

Salmon returning to Goodnews River support subsistence, commercial, and sport fisheries near the communities of Goodnews Bay and Platinum in Southwest Alaska. The Alaska Department of Fish and Game (ADF&G), in cooperation with the U.S. Fish and Wildlife Service (USFWS) Togiak National Wildlife Refuge (TNWR) and Office of Subsistence Management (OSM), operates a resistance board weir on Middle Fork Goodnews River. The weir provides a method for enumerating returning adult salmon, by species, and collecting data utilized in an effort to manage the resource sustainably.

ADF&G is responsible for managing the salmon fisheries of Alaska, in a manner consistent with Sustainable Salmon Fisheries Policy (5 AAC 39.222). A core principle of this policy is management for escapements within ranges that provide a sustainable harvest yield and maintain normal ecosystem functioning. Managing for this policy requires long-term monitoring projects that reliably measure annual escapement to key spawning systems and track temporal and spatial patterns in abundance. Data collected from escapement projects provide a means to set escapement goals and monitor the goals annually. Escapement data can be used in managing fisheries harvest, with the goal of managing for a sustainable resource. The Goodnews River weir provides a means for collection of escapement data by monitoring cumulative passage and progress toward achieving escapement goals. Goals have been set for Chinook Oncorhynchus tshawytscha, sockeye O. nerka, chum O. keta, and coho salmon O. kisutch.

#### SALMON FISHERIES

#### **Subsistence Fisheries**

Subsistence fishing is allowed throughout the Goodnews River drainage and in Goodnews Bay and is primarily performed with drift and set gillnets. ADF&G has quantified subsistence salmon harvests in the communities of Goodnews Bay and Platinum since 1977. Harvest estimates are determined from interviews with subsistence fishermen in October and November. Sockeye salmon have been the most utilized subsistence salmon species in the Goodnews Bay area with a 10-year (2003–2012) average harvest of 1,276 fish, followed by coho salmon (799 fish), Chinook salmon (775 fish), and chum salmon (381 fish) (Shelden et al. 2014). There is no

estimate of total subsistence harvest of Dolly Varden char *Salvelinus malma* from Goodnews River. However, in the 2012 subsistence harvest survey, 53 of 87 households in Goodnews Bay and Platinum reported a collective harvest of 1,421 char from the Goodnews drainage. It is difficult to track non-salmon subsistence harvest among years because the methods have not been consistent, but the importance of char, primarily Dolly Varden, to the subsistence diet in southwest Alaska is well known (Mark Lisac, USFWS Fisheries Biologist, personal communication). Wolfe et al. (1984) estimated that char accounted for a significant portion of the total subsistence harvested fish in the village of Goodnews Bay.

#### **Commercial Fisheries**

Commercial salmon fishing occurs in Goodnews Bay within the boundaries of District W-5, the southernmost district in the Kuskokwim Area (Figure 1). Commercial fishing has occurred annually in District W-5 since it was established by the Alaska Board of Fisheries (BOF) in 1968. Permit holders have unrestricted movement between commercial fishing districts within the Kuskokwim Area, and fishermen from distant communities often participate in the District W-5 commercial fishery. The commercial fishery is primarily directed toward harvesting sockeye and coho salmon and is conducted from skiffs using hand-pulled gillnets. Pink salmon *O. gorbuscha* are the least valuable species commercially and have not been targeted in recent years. ADF&G has collected harvest data from fish buyers and processors since the district was created.

Since 1969, combined commercial harvests of salmon species in District W-5 have ranged from 2,879 fish in 1971 to 148,036 fish in 1994. Harvest numbers have been relatively stable since the late 1990s, with the exception of the low harvest in 2002 when market demand and processing capacity were low (Brazil et al. 2013). The recent 10-year average harvest (2003–2012) was 62,063 salmon. Harvests efforts were high through the early 1990s when over 100 permits were fished annually. Harvest efforts have been relatively low in recent years, with the recent 10-year average (2003–2012) of 36 permits fished annually (Travis Elison, Commercial Fisheries Biologist, ADF&G, personal communication October 9, 2013, Anchorage).

# **Sport Fisheries**

Sport fishing occurs throughout the Goodnews River drainage. Pacific salmon (primarily Chinook and coho), rainbow trout *O. mykiss*, Dolly Varden char, Arctic char *S. alpinus*, lake trout *S. namaycush*, and Arctic grayling *Thymallus arcticus* are targeted. Many sport fishermen take commercially guided or unguided float trips from lakes in the headwaters to the mouth at Goodnews Bay. There is currently 1 commercially operated lodge with semi-permanent camps in the drainage that offer fishing from powered skiffs. ADF&G has been estimating sport fishery harvests consistently since 1991. From 2008 to 2012 there was an average of 3,386 angler-days annually. The most recent 5-year average annual harvest (2008–2012) was 492 coho, 130 sockeye, 40 Chinook, and 20 chum salmon and 326 Dolly Varden char (Chythlook 2014).

## **PROJECT HISTORY**

ADF&G, Division of Commercial Fisheries, has operated a salmon escapement monitoring project on Middle Fork Goodnews River since 1981 (Appendix A). The project was initiated as a counting tower in 1981 and operated through 1990 (Schultz 1982; Burkey 1990) focusing counts on Chinook, sockeye, and chum salmon. Although successful, the tower was limited by problems with species apportionment and high labor costs (Menard 1999). In 1991, resources were

redirected towards a fixed-picket weir to reduce labor costs and improve species identification. The fixed-picket weir was operated from 1991 through midseason 1997, approximately 229 m downstream from the former tower site. Fish passage could be controlled, eliminating the need for hourly monitoring and increasing the efficiency of collecting age, sex, and length (ASL) information. Seasonal flood events were problematic if the weir could not be removed in time. The weir would rapidly collect debris, damming the flow until it failed and washed downstream, which occurred several times during the early 1990s.

In the mid-1990s, ADF&G began cooperating with USFWS to build a resistance board (floating) weir that would allow the project's operational period to include the coho salmon run during August and September. In July 1997 the resistance board weir was installed. This weir is designed to shed debris loads by sinking under high water conditions and allows the project to remain operational at higher water levels compared to the fixed-picket weir. The resistance board weir design can be rendered inoperable during extreme high water events; however, the weir can regain operations quickly once the high water subsides.

Extended operation of the weir has also allowed biologists to monitor the migration of Dolly Varden char. Dolly Varden char are anadromous and believed to be aggregates of mature fish returning to spawn and mixed stocks of immature fish that intend to overwinter in the drainage (Lisac 2007). Dolly Varden char contribute to the overall subsistence harvest of the residents in the Goodnews Bay area (Wolfe et al. 1984). However, quantitative information on actual subsistence harvest is not available. The weir has provided run timing and abundance estimates for Dolly Varden char since 1996 and was used as a platform for Dolly Varden char life history studies from 2001 until 2009 (Lisac 2010).

In 2006, TNWR provided an underwater video monitoring system to the project. This system allows the passage chute to be open for more hours per day. The system is controlled by digital video recorder with motion sensing software that condenses the hours of fish passage into a shorter video stream. Video monitoring allows for a reduction in staff hours devoted to visually monitoring daily passage.

### ESCAPEMENT MONITORING AND ESCAPEMENT GOALS

The Middle Fork Goodnews River weir serves primarily as a management tool for commercial and subsistence salmon fisheries in the Goodnews Bay area. These data are used to make inseason management decisions based on both sustainable escapement goals (SEG) and biological escapement goals (BEG). The project also serves as a platform for other studies in the drainage, such as collecting samples for genetic stock identification and tagging Dolly Varden char to study run timing and seasonal distribution (Lisac 2010).

An evaluation of AYK Region escapement goals in 2007 resulted in a revision of the Middle Fork Goodnews River weir Chinook and sockeye salmon escapement goals from SEGs to BEGs (Brannian et al. 2006). The BEG for Chinook salmon was set at 1,500 to 2,900 fish, and the BEG for sockeye salmon was set at 18,000 to 40,000 fish. The SEGs for chum and coho salmon remain set at 12,000 fish. The 2013 evaluation of AYK Region escapement goals did not result in changes to escapement goals set for Goodnews River salmon (Conitz et al. 2012).

# AGE, SEX, AND LENGTH COMPOSITION ESTIMATES

Salmon ASL information has been collected from the weir project since 1984. Historically, the dominant age classes for Chinook salmon are age-1.2, -1.3 and -1.4 fish. Sockeye salmon escapement is dominated by age-1.3 fish. Chum salmon dominant age class alternates between age-0.3 and 0.4 fish. Age-2.1 fish are dominant for coho salmon. Chinook salmon male to female ratio varies with run timing, with males more dominant for the total run. Sex ratios are approximately 1 to 1 for sockeye, chum and coho salmon. Historical summaries of existing ASL information for salmon returning to the Goodnews River drainage can be found in Molyneaux et al. (2010). Dolly Varden char sex, length and maturity information was collected at the weir site from 2001 to 2009 (Lisac 2010) but is no longer being collected.

# **OBJECTIVES**

Annual project objectives are to:

- 1. Estimate Chinook, sockeye, chum, coho salmon, and Dolly Varden char escapement at the weir.
- 2. Estimate the run timing of Chinook, sockeye, chum, Coho salmon, and Dolly Varden char at the weir.
- 3. Estimate the ASL composition of annual Chinook, sockeye, chum, and coho salmon escapements such that 95% simultaneous confidence intervals for the age composition have a maximum width of  $\pm$  10% ( $\alpha$  = 0.05 and d = 0.10).
- 4. Record atmospheric and hydrologic conditions at the weir site.

# **METHODS**

#### SITE DESCRIPTION

The Goodnews River watershed drains an area of nearly 2,590 km² along the west side of TNWR (Figure 2). It flows a distance of 97 river kilometers (rkm) along its mainstem, from the Ahklun Mountains southwest into Goodnews Bay. Two major tributaries, Middle Fork and South Fork Goodnews rivers, join the mainstem a few miles from its mouth and are included within its drainage. In order to differentiate between them in this report, "Goodnews River" will refer to all 3 drainages, and the mainstem Goodnews River, upstream of its confluence with Middle Fork Goodnews River, will be referred to as "North Fork Goodnews River". Chinook, sockeye, chum, coho, and pink salmon, along with several other anadromous and resident species including Dolly Varden char and rainbow trout, spawn in the Goodnews River drainage.

Middle Fork Goodnews River parallels North Fork Goodnews River and flows a distance of approximately 72 rkm before joining the mainstem. The weir project is located approximately 16 rkm from the village of Goodnews Bay on the Middle Fork at lat 59°09.595′N, long 161°23.287′W (Figure 2). The channel at the weir location is approximately 61.0 m wide and has a regular profile from 0.3 to 1.2 m deep, which tapers to low cut banks on either side and flows 0.6 to 1.2 m·s<sup>-1</sup> during average water conditions. The river substrate is primarily cobblestone, gravel, and sand. The channel upstream of the weir is characterized by deep water along a steep cut bank approximately 6.1 m in height on the south bank (as looking downstream), tapering to a gravel bar on the north bank. The project campsite is located on the south bank approximately 46 m upstream and 27 m inland from the weir location.

# RESISTANCE BOARD WEIR

Methods for the design, construction, and installation of the resistance board weir followed Tobin (1994) and Stewart (2002, 2003). The picket spacing allows smaller fish, such as pink salmon and non-salmon species, to pass upstream and downstream through the weir. Further details of resistance board weir components used for the Goodnews River weir are described in Stewart (2004).

Two fish passage chutes were installed on the weir at approximately 15 m and 5 m from the south bank. A 3-m by 4.6-m trap used to collect fish for ASL sampling was installed directly upstream of the passage chute located furthest from the bank. The fish passage chute located nearest to the bank was connected to a passage gate that incorporated an underwater video camera to record fish passage.

Boats pass at a designated boat gate consisting of modified weir panels located near the middle of the weir. Boats with jet-drive engines were common and could pass upstream and downstream over the boat gate easily at reduced speed. Rafts could pass downstream by submerging the boat passage panels and drifting over the weir. Boats with propeller-drive engines were uncommon and required being towed upstream across the weir with assistance from crew members.

## **ESCAPEMENT MONITORING AND ESTIMATES**

The Middle Fork weir operated from June 24 through September 2. Counting periods occurred regularly throughout the day, typically for 1–2 hours in duration, beginning in the morning and continuing as late as light permitted. During counting periods, the passage gate was opened to allow fish to pass through the weir. Video recording equipment has been used in previous seasons, to monitor passage. The equipment could not be properly installed for the 2013 season and was not used to monitor passage. Any fish observed traveling downstream through the fish passage chutes were excluded from the upstream tally.

Passage missed during inoperable periods or breach events was estimated using Hierarchical Bayesian Estimation technique (Adkison 2001). In this, a log-normal distribution run-timing model was fitted to log-plus-1-transformed daily passage weir counts (ln(daily weir count +1)).

Let  $y_{it}$  be the log plus 1 transformed weir count of  $i^{th}$  year (1998–2012) and  $t^{th}$  day, so  $y_{it} = \ln(\text{daily weir count} + 1)$ . Further assume that  $y_{it}$  is a random variable from a normal distribution of mean  $\theta_{it}$  and standard deviation of all years  $\sigma$ . Then:

$$y_{it} \sim N(\theta_{it}, \sigma^2)$$
 and  $\theta_{it} = a_i \exp((\ln(t/\mu_i))^2/b_i)$ 

where  $\theta_{it}$  is modeled to have a log-normal run timing, and,

where  $a_i > 0$ : the maximum daily passage of the  $i^{th}$  year;

 $t \ge 1$ : passage date starting June 1 (t=1 is June 1);

 $\mu_i > 0$ : mean passage date starting June 1 of the  $i^{th}$  year;

 $b_i > 0$ : days represented by the run period of the  $i^{th}$  year.

At the upper hierarchical level, annual maximum daily passage ( $a_i$ ), mean passage date ( $\mu_i$ ), and spread ( $b_i$ ) were assumed to be normally distributed as,

$$a_i \sim N(a_0, \sigma_a^2), \qquad \qquad \mu_i \sim N(\mu_0, \sigma_u^2), \qquad \qquad b_i \sim N(b_0, \sigma_b^2).$$

Prior distribution of the above parameters was assumed to be non-informative, as,

$$a_0 \sim N(5,1000) \quad (a_0 > 0); \qquad \mu_0 \sim N(0.5,100) \quad (\mu_0 > 0); \qquad b_0 \sim N(50,10) \quad (b_0 > 0);$$

$$\sigma_a \sim \text{uniform}(0.1, 10,000);$$
  $\sigma_b \sim \text{uniform}(0.1, 10,000);$   $\sigma_u \sim \text{uniform}(0.1, 10,000);$   $\sigma \sim \text{uniform}(0.1, 10,000).$ 

Markov-chain Monte Carlo methods (WinBUGS v1.4; Spiegelhalter et al. 1999) were used to generate the joint posterior probability distribution of all unknowns in the model. Simulation was done for 10,000 iterations, with the first 5,000 burn-in period discarded, and samples were taken every 2 iterations. This resulted in 2,500 samples, and the median sample value was used to represent the point estimate of daily missed passage. Bayesian credible intervals (95%) were obtained from the percentiles (2.5 and 97.5) of the marginal posterior distribution (but not reported here). Estimates of missed passage are based on historical observed passage data collected at the weir from 2000 through the current season. Historical observed passage data adequate to estimate passage range from June 26 through September 18.

# AGE, SEX, AND LENGTH SAMPLING AND ESTIMATES

Sample sizes were calculated using Bromaghin (1993) and adjusted for a non-readable scale rate of 20% such that sample sizes would produce simultaneous 95% confidence interval estimates of age composition  $\pm$  10% for each age-sex category ( $\alpha$  = 0.05 and d = 0.10). The sample size for Chinook salmon was adjusted for a finite population based on the lower bound of the SEG. Sample sizes of sockeye and chum salmon were increased by a factor of 3 to allow for postseason stratification. The minimum sample size objective for each species was 230 Chinook, 630 sockeye, and 600 chum salmon.

Daily sample objectives were based on a proportional sampling design generated from the average run timing for each species. Based on historical average passage data and sample size objectives, seasonal sample proportions were 0.08 for Chinook, 0.02 for sockeye, 0.03 for chum, and 0.02 for coho salmon. Therefore, the daily salmon sample size was the derived average percent of the previous day's passage. Due to the abundance of sockeye, chum, and coho salmon, samples could be collected every few days, and the sample size was the sum of the previous day's passage multiplied by the daily proportion. When daily sample objectives were not met attempts were made to collect additional samples during the next opportunity. Ultimately, it was up to the crew leader to determine the appropriate sample schedule based on fish passage patterns and minimum sample size objectives as outlined above. The determined proportional sample size objective total for each species was 231 Chinook, 691 sockeye, 663 chum, and 604 coho salmon.

Salmon were sampled from a trap attached to the weir. To sample sockeye, chum, and coho salmon, the exit gate was closed allowing fish entering the trap to accumulate inside. The trap was typically allowed to fill with fish, and sampling was done during scheduled counting periods. Chinook salmon passage has a relatively low proportion relative to other species.

Chinook salmon were captured during normal passage counts while allowing other species to pass through the trap (active sampling).

For escapement sampling, scales were removed from the preferred area of the fish (INPFC 1963). A minimum of 3 scales were removed from each Chinook and coho salmon, and 1 scale was removed from each chum and sockeye salmon. Scales were mounted on numbered and labeled gum cards. Sex was determined by visually examining external morphology such as the development of the kype, roundness of the belly, and the presence or absence of an ovipositor. Length was measured to the nearest millimeter from mideye to tail fork and the fish released upstream of the weir. After sampling was concluded, gum cards and data forms were completed and returned to the Bethel ADF&G office for processing.

ADF&G staff in Bethel and Anchorage aged scales, processed the ASL data, and generated data summaries as per Molyneaux et al. (2010). Samples were divided into 3 strata based on cumulative percent passage. Each stratum was then weighted by the number of fish passing in that stratum to estimate the overall age and sex composition. Age and sex confidence interval bounds were estimated to determine if the desired precision was met for the season estimate. If the desired precision level was met, then season summary was the weighted age and sex composition estimate of the escapement. If the desired precision level was not met, then only the sample age and sex composition was presented.

Ages are reported in the tables using European notation. European notation is composed of 2 numerals separated by a decimal, where the first numeral indicates the number of winters spent in fresh water, and the second numeral indicates the number of winters spent in the ocean (Groot and Margolis 1991). Total age is equal to the sum of these 2 numerals plus 1 to account for the single winter of egg incubation in the gravel. Original ASL gum cards, acetates, and mark-sense forms are archived at the ADF&G office in Anchorage. Computer files were archived by ADF&G in the Anchorage and Bethel offices.

### ATMOSPHERIC AND HYDROLOGICAL MONITORING

Atmospheric and hydrological conditions were recorded at 1000 hours each day. Cloud cover was judged in percent of total sky covered; wind speed was estimated in miles per hour and direction was noted; precipitation was measured in mm per 24 hours. Daily air and water temperatures were recorded in degrees Celsius. The river level was recorded daily and was referenced to a benchmark established in 1997 representing a river stage of 150 cm. In 2011, a new benchmark was established because the old benchmark had eroded into the river. The new benchmark has been calibrated to the old benchmark and is designated by a rebar stake driven into the ground near the camp trail.

# RESULTS

#### WEIR OPERATIONS

Weir operation began on June 24, in the evening, and passage was monitored until September 2. Video monitor equipment could not be assembled for the 2013 season and crew conducted manual passage counts. Minor flooding occurred around the camp-side fixed picket section on July 9. High water flowing over submerged panels led to incomplete escapement monitoring from August 8 through August 17. A second high water period submerged panels and caused scouring under the substrate rail, rendering the weir inoperable on September 2. Water level

remained high and further passage counts were not possible. The crew began weir removal on September 13. Passage estimates for the inoperable period are included in the total escapement counts. An estimation of missed Chinook, sockeye, chum, and coho salmon passage was determined for September 2 through September 18.

#### SALMON ESCAPEMENT

The 2013 Chinook salmon escapement through the Middle Fork GoodnewsRiver weir was 1,189 fish. The first Chinook salmon was observed on June 26, and the last Chinook salmon was observed on August 26. Passage during inoperable periods was estimated to be 21 fish (1.8% of total passage). Based on the operational period and inclusive of missed passage estimates, the median passage date was July 20, and the central 50% of the run occurred between July 11 and July 24 (Table 1).

Sockeye salmon escapement was 23,243 fish. The first sockeye salmon was observed on June 24, and the last sockeye salmon was observed on September 2. Passage during inoperable periods was estimated to be 214 fish (0.9% of total passage). Based on the operational period and inclusive of missed passage estimates, the median passage date was July 4, and the central 50% of the run occurred between June 30 and July 12 (Table 1).

Chum salmon escapement was 28,091 fish. The first chum salmon was observed on June 25 and, the last chum salmon was observed on September 2. Passage during inoperable periods was estimated to be 418 fish (1.5% of total passage). Based on the operational period and inclusive of missed passage estimates, the median passage date was July 20, and the central 50% of the run occurred between July 17 and July 24 (Table 1).

Coho salmon escapement was 23,702 fish. The first coho salmon was observed on July 20, and the last coho salmon was observed on September 2. Passage during inoperable periods was estimated to be 11,809 fish (50.8% of total passage). Based on the operational period and inclusive of missed passage estimates, the median passage date was September 1, and the central 50% of the run occurred between August 27 and September 7 (Table 1).

Observed passage of pink salmon was 530 fish. The first pink salmon was observed on June 8, and the last pink salmon was observed on September 1. The median passage date was August 21, and the central 50% of the run occurred between August 16 and August 26. Missed passage estimates of pink salmon are not made for inoperable periods (Table 2).

Observed passage of Dolly Varden char was 5,163 fish. The first Dolly Varden char was observed on June 24, and the last Dolly Varden char was observed on September 1. The median passage date was July 20, and the central 50% of the run occurred between July 18 and July 23. Missed passage estimates of Dolly Varden char are not made for inoperable periods. Observed passage of resident species in 2013 was 51 rainbow trout, and 179 whitefish (Table 2).

# AGE, SEX, AND LENGTH COMPOSITION ESTIMATES

Sample sizes and distribution of samples were sufficient for estimating Chinook, sockeye, and chum salmon ASL composition of the escapement.

Age was determined for 175 Chinook salmon in 2013. Overall, 95% confidence intervals for the age composition of annual escapement were no wider than  $\pm$  7.2%. Age-1.4 Chinook salmon were the most abundant age class (60.8%), followed by age-1.3 (22.4%) and age-1.2 (14.8%). Females comprised 56.7% of the aged samples. Mean male length was 522 mm for age-1.2, 753

mm for age-1.3, and 865 mm for age-1.4 fish. Mean female length was 801 mm for age-1.3 and 870 mm for age-1.4 fish. Overall, male lengths ranged from 421 to 1060 mm, and female lengths ranged from 703 to 970 mm (Table 3).

Age was determined for 625 sockeye salmon in 2013. Overall, 95% confidence intervals for age composition of annual escapement were no wider than  $\pm$  4.6%. Age-1.3 sockeye salmon were the most abundant age class (52.5%), followed by age-2.3 (21.4%) and age-1.2 (6.8%). Females comprised 56.3% of the aged samples. Mean male length was 507 mm for age-1.2, 575 mm for age-1.3, and 573 mm for age-2.3 fish. Mean female length was 483 mm for age-1.2, 542 mm for age-1.3, and 535 mm for age-2.3 fish. Overall, male lengths ranged from 431 to 633 mm, and female lengths ranged from 433 to 588 mm (Table 4).

Age was determined for 494 chum salmon in 2013. Overall, 95% confidence intervals for age composition of annual escapement were no wider than  $\pm$  4.3%. Age-0.4 chum salmon were the most abundant age class (64.5%), followed by age-0.3 (32.8%) and age-0.5 (2.7%). Females comprised 44.4% of the aged samples. Mean male length was 586 mm for age-0.3, 606 mm for age-0.4, and 641 mm for age-0.5 fish. Mean female length was 551 mm for age-0.3, 570 mm for age-0.4, and 566 mm for age-0.5 fish. Overall, male lengths ranged from 502 to 798 mm, and female lengths ranged from 493 to 693 mm (Table 5).

Age was determined for 132 coho salmon in 2013. Sample results were insufficient for stratification, and a weighted age composition of escapement could not be determined. Results of processed samples were 10 age-1.1, 118 age-2.1, 3 age-3.1, and 1 age-4.1 fish. Sex composition of sampled fish was 64 male and 68 female. Mean male length of the samples was 550 mm for age-1.1 and 597 mm for age-2.1 fish. Mean female length of the samples was 565 mm for age-1.1 and 602 mm for age-2.1 fish. Overall, male lengths ranged from 406 to 668 mm, and female lengths ranged from 488 to 665 mm (Table 6).

#### ATMOSPHERIC AND HYDROLOGICAL MONITORING

Atmospheric and hydrological observations were recorded daily from June 21 to September 15. Air temperatures ranged from 5° to 20°C. Water temperature ranged from 7° to 14°C. Several rain events resulted in daily accumulations from trace amounts up to 31.75 mm for a 24 hour period. Total rainfall during this period was 299.2 mm. Water levels ranged from -9 to 82 cm. A recorded level below 0 occurs when the water level is below the set benchmark (Table 7).

### DISCUSSION

## **WEIR OPERATIONS**

The 2013 weir operation was successful in estimating escapement and run timing of Chinook, sockeye, chum, and coho salmon, and Dolly Varden char past the weir. The majority of project objectives were achieved, with the exception of the Chinook, chum, and coho salmon ASL sampling objective. Missed passage estimates for inoperable periods accounted for 10 days of Chinook, sockeye, chum, and coho salmon passage and 17 days of passage after operation ceased. The project continues to add to the long-term escapement, run timing, and ASL database for salmon returning to Goodnews River and serves as a platform to study other anadromous and resident freshwater species.

#### ESCAPEMENT MONITORING AND ESTIMATES

The 2013 Chinook salmon escapement at the weir was below the BEG range of 1,500 to 2,900 fish. However, the 2013 escapement improved by double the record low of the previous season, 2012, but still ranked the second lowest among recorded years with similar monitoring methods (Figure 3; Appendix A). Low Chinook salmon escapement estimates were also reported along the Kuskokwim River (Travis Elison, Commercial Fisheries Biologist, ADF&G, Anchorage, personal communication). The 50% point of the run passed 5 days later than the median passage date for 1998–2012. Chinook salmon have returned later than the median passage date since 2006 (Figure 4).

The 2013 sockeye salmon escapement at the weir was within the BEG range of 18,000 to 40,000 fish; however, it was among the lowest escapements for recorded years with similar monitoring methods. The escapement was near half of the recent 10-year average (2003–2012; Figure 3; Appendix A). Run timing was earlier than average, and the 50% point of the run passed 4 days earlier than the median passage date (1998–2012; Figure 4).

The 2013 chum salmon escapement at the weir was above the SEG lower bound of 12,000 fish and near the recent 10-year average (2003–2012; Figure 3; Appendix A). The 50% point of the run passed 2 days later than the median passage date (1998–2012; Figure 5).

The 2013 coho salmon escapement was above the SEG lower bound of 12,000 fish. The weir operated until September 2, and historical data shows coho salmon continue to run through September. The historical average run midpoint occurs September 1. Data collected in 2013 likely represented the initial 50% of the run and is sufficient to use in Bayesian method estimation. Estimates account for approximately 50% of the total run and weigh overall run timing. Combining observed data and estimates, run timing fits the average timing trend (Figure 5).

Passage estimates were included for periods of missed operation, due to flooding. Passage estimates for short term breach events were not determined. Overall passage was low, and it was determined that missed passage from short term breaches would not have a significant effect on overall escapement and run timing results.

Dolly Varden char counts generated by the weir project represented an unknown proportion of the overall Dolly Varden char migration within Middle Fork Goodnews River and should be considered an index. The current spacing between weir panel pickets was chosen for optimal weir operations during high water events and for generating escapement counts of Chinook, sockeye, chum, and coho salmon. Therefore, the weir count must be considered to be size selective for larger (> 400 mm) Dolly Varden char and probably does not well represent the younger, smaller fish that can pass through the weir unobserved (Lisac 2004). The 2013 Dolly Varden char count was the highest in over 10 years and twice the historical average (2,556; Figure 6; Appendix A).

# AGE, SEX, AND LENGTH COMPOSITION ESTIMATES

Achieving Chinook salmon ASL sampling objectives continues to be problematic. Low daily passage, migration patterns, and behavior at the weir have made sample collection difficult. Chinook salmon tend to migrate in large pulses so that their passage may be slow for a period of days and then suddenly peak. Coordinating ASL sampling to coincide with these pulses is

difficult because timing of the pulses cannot be accurately predicted. An active sampling strategy of capturing Chinook salmon individually or in small groups as other species are allowed to pass freely through the trap has improved sample sizes, but the fish trap used at the weir does not present the best platform for active sampling. This strategy can work well but is time intensive, and Chinook salmon are often hesitant to approach the trap in its current fixed location and when there is increased activity around the trap. Crew was able to meet the sample objective this season; adequate sample data was last achieved in 2008 (Brodersen et al. 2013). In an effort to achieve Chinook salmon sample objectives and acquire a long term data set, active sampling will continue to be conducted at the weir.

The sample objective was met for sockeye salmon, and the samples were sufficient to estimate the age composition of the total escapement. The age-1.3 contribution was a smaller portion than observed in past years. Age-2.3 showed heavier proportion than other historical observations (Brodersen et al. 2013).

The sample size objectives were met, and readability resulted in precision criteria needed for estimating the age composition of the run. The age composition was typical for chum salmon with age-0.4 and age-0.3 as the most dominant age classes. The age-0.4 contribution was greater than observed in previous years, where the age-0.4 contribution was more dominant (Brodersen et al. 2013).

The proportional sample goals were not met for coho salmon. Sample distribution did not produce adequate representation of the second half of the run. Early weir closure prevented collection of samples after the historical midpoint of the run, and data were not available to represent all portions of the run.

# RECOMMENDATIONS

Annual operation of the Middle Fork Goodnews River weir should continue indefinitely. As the only ground-based monitoring project in District W-5, the project provides valuable, reliable inseason and postseason information about Chinook, sockeye, chum, and coho salmon that is critical for sustainable salmon management. Manual counts were increased this season due to lack of video monitoring. The majority of passage was monitored through the main trap. Greater fish passage gave more opportunity for ASL collection. Focused effort on ASL collection will increase long-term trend data. The low overall passage rate can be managed by the current staffing levels without video support. Video equipment could be more advantageous at a location with heavier passage.

### ACKNOWLEDGEMENTS

The author would like to thank Aaron Tiernan, for supervising field season planning and implementation, as well as various peer reviewers of this manuscript, and the 2013 weir crew: Justin Cross, Dimitrios Alexiadis, and technician Andrew Reichel with Bristol Bay Native Association (BBNA). The author would also like to thank Mark Lisac from Togiak National Wildlife Refuge (TNWR) for his assistance with all aspects of the project. The authors would like to extend thanks to the village of Goodnews Bay. The USFWS, Office of Subsistence Management, provided \$14,000 in funding support for this project (OSM 10-300) through the Fisheries Resource Monitoring Program, under agreement number 70181AJ027, BBNA and TNWR.

### REFERENCES CITED

- ADF&G (Alaska Department of Fish and Game). 2004. Escapement goal review of select AYK Region salmon stocks. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A04-01, Anchorage.
- Adkison, M., and Z. Su. 2001. A comparison of salmon escapement estimates using a hierarchical Bayesian approach versus separate maximum likelihood estimation of each year's return. Canadian Journal of Fisheries and Aquatic Sciences 58:1663-1671.
- Brannian, L. K., M. J. Evenson, and J. R. Hilsinger. 2006. Escapement goal recommendations for select Arctic-Yukon-Kuskokwim region salmon stocks, 2007. Alaska Department of Fish and Game, Fishery Manuscript No. 06-07, Anchorage.
- Brazil, C., D. Bue, and T. Elison. 2013. 2011 Kuskokwim area management report. Alaska Department of Fish and Game, Fishery Management Report No. 13-23, Anchorage.
- Brodersen, A. B., Z. W. Liller, and C. L. Truesdale. 2013. Salmon age, sex, and length catalog for the Kuskokwim Area, 2012. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 13-07, Anchorage.
- Bromaghin, J. F. 1993. Sample size determination for interval estimation of multinomial probabilities. The American Statistician 47(3):203-206.
- Burkey Jr., C. 1990. Goodnews River fisheries studies, 1989. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3B90-16, Bethel.
- Conitz, J. M., K. G. Howard and M. J. Evenson. 2012. Escapement goal recommendations for select Arctic-Yukon-Kuskokwim Region salmon stocks, 2013. Alaska Department of Fish and Game, Fishery Manuscript No. 12-07, Anchorage.
- Chythlook, J. 2014. Fishery management report for sport fisheries in the Kuskokwim-Goodnews Management Area, 2012. Alaska Department of Fish and Game, Fishery Management Report Series No. 14-27, Anchorage.
- Groot, C., and L. Margolis, editors. 1991. Pacific salmon life histories. Department of Fisheries and Oceans, Biological Sciences Branch, Canada. UBC Press, Vancouver, British Columbia.
- INPFC (International North Pacific Fisheries Commission). 1963. Annual report, 1961. Vancouver, British Columbia.
- Lisac, M. J. 2004. Run timing, seasonal distribution and biological characteristics of Dolly Varden *Salvelinus malma* in the Middle Fork Goodnews River, Togiak National Wildlife Refuge, 2001. Final Report. U. S. Fish and Wildlife Service, Dillingham, Alaska.
- Lisac, M. J. 2007. Run timing, seasonal distribution and biological characteristics of Dolly Varden *Salvelinus malma* in the Middle Fork Goodnews River, Togiak National Wildlife Refuge, 2003-2006. U. S. Fish and Wildlife Service, Togiak National Wildlife Refuge, Alaska Fisheries Data Series Report Number 2007-8, Dillingham, Alaska.
- Lisac, M. J. 2010. Abundance and run timing of Dolly Varden in the Middle Fork Goodnews River, 2008 and 2009. U.S. Fish and Wildlife Service, Togiak National Wildlife Refuge, Alaska Fisheries Data Series Report Number 2010-13, Dillingham, Alaska.
- Menard, J. 1999. Middle Fork Goodnews River fisheries studies, 1998. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A99-13, Anchorage.
- Molyneaux, D. B., A. R. Brodersen, and C. A. Shelden. 2010. Salmon age, sex, and length catalog for the Kuskokwim Area, 2009. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A10-05, Anchorage.
- Schultz, K. 1982. Goodnews River tower study, 1982. Alaska Department of Fish and Game, Division of Commercial Fisheries, Kuskokwim Salmon Escapement Report No. 24, Bethel.

# **REFERENCES CITED (Continued)**

- Shelden, C. A., T. Hamazaki, M. Horne-Brine, G. Roczicka, M. J. Thalhauser, H. Carroll. 2014. Subsistence salmon harvests in the Kuskokwim area, 2011 and 2012. Alaska Department of Fish and Game, Fishery Data Series No. 14-20 Anchorage.
- Spiegelhalter, D. J., A. Thomas, N. G. Best, and D. Lunn. 1999. WinBUGS user manual: Version 1.4. MRC Biostatistics Unit, Cambridge.
- Stewart, R. 2002. Resistance board weir panel construction manual, 2002. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A02-21, Anchorage.
- Stewart, R. 2003. Techniques for installing a resistance board weir, 2003. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A03-26, Anchorage.
- Stewart, R. 2004. Middle Fork Goodnews River weir, 2003. Alaska Department of Fish and Game, Regional Information Report 3A04-20, Anchorage.
- Tobin, J. H. 1994. Construction and performance of a portable resistance board weir for counting migrating adult salmon in rivers. U. S. Fish and Wildlife Service, Kenai Fishery Resource Office, Alaska Fisheries Technical Report Number 22, Kenai.
- Wolfe, R. J., J. J. Gross, G. J. Langdon, J. M. Wright, G. K. Sherrod, L. J. Ellanna, V. Sumida, and P. J. Usher. 1984. Subsistence-based economies in coastal communities of southwest Alaska. Alaska Department of Fish and Game, Division of Subsistence, Technical Paper No.89, Anchorage.

# **TABLES AND FIGURES**

Table 1.—Daily, cumulative, and cumulative percent passage of Chinook, sockeye, chum, and coho salmon at the Middle Fork Goodnews River weir, 2013.

|      |                 | Chinook | ζ         |       | Sockeye | ,         |                 | Chum   |           | Coho  |     |           |  |
|------|-----------------|---------|-----------|-------|---------|-----------|-----------------|--------|-----------|-------|-----|-----------|--|
| Date | Daily           | Cum     | % passage | Daily | Cum     | % passage | Daily           | Cum.   | % passage | Daily | Cum | % passage |  |
| 6/24 | 0               | 0       | 0         | 53    | 53      | 0         | 0               | 0      | 0         | 0     | 0   | 0         |  |
| 6/25 | 0               | 0       | 0         | 340   | 393     | 2         | 28              | 28     | 0         | 0     | 0   | 0         |  |
| 6/26 | 8               | 8       | 1         | 953   | 1,346   | 6         | 89              | 117    | 0         | 0     | 0   | 0         |  |
| 6/27 | 35              | 43      | 4         | 1,302 | 2,648   | 11        | 181             | 298    | 1         | 0     | 0   | 0         |  |
| 6/28 | 21              | 64      | 5         | 1,444 | 4,092   | 18        | 165             | 463    | 2         | 0     | 0   | 0         |  |
| 6/29 | 1               | 65      | 5         | 1,157 | 5,249   | 23        | 73              | 536    | 2         | 0     | 0   | 0         |  |
| 6/30 | 7               | 72      | 6         | 2,220 | 7,469   | 32        | 80              | 616    | 2         | 0     | 0   | 0         |  |
| 7/01 | 5               | 77      | 6         | 1,041 | 8,510   | 37        | 157             | 773    | 3         | 0     | 0   | 0         |  |
| 7/02 | 6               | 83      | 7         | 1,300 | 9,810   | 42        | 190             | 963    | 3         | 0     | 0   | 0         |  |
| 7/03 | 5               | 88      | 7         | 1,378 | 11,188  | 48        | 213             | 1,176  | 4         | 0     | 0   | 0         |  |
| 7/04 | 0               | 88      | 7         | 984   | 12,172  | 52        | 57              | 1,233  | 4         | 0     | 0   | 0         |  |
| 7/05 | 8               | 96      | 8         | 967   | 13,139  | 57        | 212             | 1,445  | 5         | 0     | 0   | 0         |  |
| 7/06 | 38              | 134     | 11        | 1,305 | 14,444  | 62        | 315             | 1,760  | 6         | 0     | 0   | 0         |  |
| 7/07 | 57              | 191     | 16        | 729   | 15,173  | 65        | 322             | 2,082  | 7         | 0     | 0   | 0         |  |
| 7/08 | 49              | 240     | 20        | 840   | 16,013  | 69        | 550             | 2,632  | 9         | 0     | 0   | 0         |  |
| 7/09 | 13 <sup>a</sup> | 253     | 21        | 265 a | 16,278  | 70        | 68 <sup>a</sup> | 2,700  | 10        | 0 a   | 0   | 0         |  |
| 7/10 | 33              | 286     | 24        | 391   | 16,669  | 72        | 188             | 2,888  | 10        | 0     | 0   | 0         |  |
| 7/11 | 19              | 305     | 26        | 472   | 17,141  | 74        | 179             | 3,067  | 11        | 0     | 0   | 0         |  |
| 7/12 | 24              | 329     | 28        | 293   | 17,434  | 75        | 320             | 3,387  | 12        | 0     | 0   | 0         |  |
| 7/13 | 25              | 354     | 30        | 357   | 17,791  | 77        | 827             | 4,214  | 15        | 0     | 0   | 0         |  |
| 7/14 | 1               | 355     | 30        | 358   | 18,149  | 78        | 816             | 5,030  | 18        | 0     | 0   | 0         |  |
| 7/15 | 2               | 357     | 30        | 618   | 18,767  | 81        | 946             | 5,976  | 21        | 0     | 0   | 0         |  |
| 7/16 | 36              | 393     | 33        | 774   | 19,541  | 84        | 439             | 6,415  | 23        | 0     | 0   | 0         |  |
| 7/17 | 8               | 401     | 34        | 784   | 20,325  | 87        | 1,907           | 8,322  | 30        | 0     | 0   | 0         |  |
| 7/18 | 20              | 421     | 35        | 384   | 20,709  | 89        | 1,837           | 10,159 | 36        | 0     | 0   | 0         |  |
| 7/19 | 36              | 457     | 38        | 274   | 20,983  | 90        | 1,824           | 11,983 | 43        | 0     | 0   | 0         |  |
| 7/20 | 147             | 604     | 51        | 332   | 21,315  | 92        | 3,068           | 15,051 | 54        | 3     | 3   | 0         |  |
| 7/21 | 34              | 638     | 54        | 240   | 21,555  | 93        | 2,142           | 17,193 | 61        | 0     | 3   | 0         |  |
| 7/22 | 175             | 813     | 68        | 104   | 21,659  | 93        | 1,909           | 19,102 | 68        | 0     | 3   | 0         |  |

-continued-

Table 1.–Page 2 of 3.

|      |                | Chinool | ζ         |                 | Sockeye | ;         |       | Chum   |           |                 | Coho  |           |
|------|----------------|---------|-----------|-----------------|---------|-----------|-------|--------|-----------|-----------------|-------|-----------|
| Date | Daily          | Cum     | % passage | Daily           | Cum     | % passage | Daily | Cum    | % passage | Daily           | Cum   | % passage |
| 7/23 | 58             | 871     | 73        | 230             | 21,889  | 94        | 1,453 | 20,555 | 73        | 0               | 3     | 0         |
| 7/24 | 20             | 891     | 75        | 167             | 22,056  | 95        | 1,140 | 21,695 | 77        | 4               | 7     | 0         |
| 7/25 | 13             | 904     | 76        | 94              | 22,150  | 95        | 579   | 22,274 | 79        | 1               | 8     | 0         |
| 7/26 | 7              | 911     | 77        | 85              | 22,235  | 96        | 832   | 23,106 | 82        | 1               | 9     | 0         |
| 7/27 | 120            | 1,031   | 87        | 76              | 22,311  | 96        | 968   | 24,074 | 86        | 3               | 12    | 0         |
| 7/28 | 5              | 1,036   | 87        | 71              | 22,382  | 96        | 359   | 24,433 | 87        | 0               | 12    | 0         |
| 7/29 | 4              | 1,040   | 87        | 82              | 22,464  | 97        | 610   | 25,043 | 89        | 5               | 17    | 0         |
| 7/30 | 11             | 1,051   | 88        | 34              | 22,498  | 97        | 500   | 25,543 | 91        | 4               | 21    | 0         |
| 7/31 | 4              | 1,055   | 89        | 37              | 22,535  | 97        | 376   | 25,919 | 92        | 1               | 22    | 0         |
| 8/01 | 5              | 1,060   | 89        | 32              | 22,567  | 97        | 280   | 26,199 | 93        | 2               | 24    | 0         |
| 8/02 | 5              | 1,065   | 90        | 24              | 22,591  | 97        | 245   | 26,444 | 94        | 9               | 33    | 0         |
| 8/03 | 13             | 1,078   | 91        | 37              | 22,628  | 97        | 137   | 26,581 | 95        | 0               | 33    | 0         |
| 8/04 | 14             | 1,092   | 92        | 41              | 22,669  | 98        | 195   | 26,776 | 95        | 9               | 42    | 0         |
| 8/05 | 38             | 1,130   | 95        | 68              | 22,737  | 98        | 242   | 27,018 | 96        | 22              | 64    | 0         |
| 8/06 | 9              | 1,139   | 96        | 41              | 22,778  | 98        | 204   | 27,222 | 97        | 27              | 91    | 0         |
| 8/07 | 9              | 1,148   | 97        | 123             | 22,901  | 99        | 204   | 27,426 | 98        | 22              | 113   | 0         |
| 8/08 | 10 b           | 1,158   | 97        | 38 b            | 22,939  | 99        | 86 b  | 27,512 | 98        | 65 <sup>b</sup> | 178   | 1         |
| 8/09 | 3 °            | 1,161   | 98        | 21 °            | 22,960  | 99        | 70 °  | 27,582 | 98        | 45 °            | 223   | 1         |
| 8/10 | 3 °            | 1,164   | 98        | 22 °            | 22,982  | 99        | 66 °  | 27,648 | 98        | 52 °            | 275   | 1         |
| 8/11 | 2 °            | 1,166   | 98        | 18 °            | 23,000  | 99        | 52 °  | 27,700 | 99        | 61 °            | 336   | 1         |
| 8/12 | 2 °            | 1,168   | 98        | 18 °            | 23,018  | 99        | 41 °  | 27,741 | 99        | 76 °            | 412   | 2         |
| 8/13 | 2 °            | 1,170   | 98        | 17 °            | 23,035  | 99        | 38 °  | 27,779 | 99        | 107 °           | 519   | 2         |
| 8/14 | 2 °            | 1,172   | 99        | 15 °            | 23,050  | 99        | 37 °  | 27,816 | 99        | 122 °           | 641   | 3         |
| 8/15 | 2 °            | 1,174   | 99        | 14 <sup>c</sup> | 23,064  | 99        | 30 °  | 27,846 | 99        | 163 °           | 804   | 3         |
| 8/16 | 1 °            | 1,175   | 99        | 13 °            | 23,077  | 99        | 24 °  | 27,870 | 99        | 197 °           | 1,001 | 4         |
| 8/17 | 2 <sup>b</sup> | 1,177   | 99        | 11 b            | 23,088  | 99        | 23 b  | 27,893 | 99        | 226 b           | 1,227 | 5         |
| 8/18 | 3              | 1,180   | 99        | 25              | 23,113  | 99        | 37    | 27,930 | 99        | 302             | 1,529 | 6         |
| 8/19 | 2              | 1,182   | 99        | 11              | 23,124  | 99        | 13    | 27,943 | 99        | 280             | 1,809 | 8         |
| 8/20 | 3              | 1,185   | 100       | 15              | 23,139  | 100       | 40    | 27,983 | 100       | 605             | 2,414 | 10        |
| 8/21 | 0              | 1,185   | 100       | 1               | 23,140  | 100       | 9     | 27,992 | 100       | 463             | 2,877 | 12        |
| 8/22 | 0              | 1,185   | 100       | 9               | 23,149  | 100       | 12    | 28,004 | 100       | 608             | 3,485 | 15        |
| 8/23 | 0              | 1,185   | 100       | 6               | 23,155  | 100       | 5     | 28,009 | 100       | 713             | 4,198 | 18        |
| 8/24 | 1              | 1,186   | 100       | 1               | 23,156  | 100       | 12    | 28,021 | 100       | 206             | 4,404 | 19        |

-continued-

Table 1.—Page 3 of 3.

|            |         | Chinool | ζ         |                | Sockeye |           |                | Chum   |           |                  | Coho   |           |
|------------|---------|---------|-----------|----------------|---------|-----------|----------------|--------|-----------|------------------|--------|-----------|
| Date       | Daily   | Cum     | % passage | Daily          | Cum     | % passage | Daily          | Cum    | % passage | Daily            | Cum    | % passage |
| 8/25       | 0       | 1,186   | 100       | 0              | 23,156  | 100       | 6              | 28,027 | 100       | 291              | 4,695  | 20        |
| 8/26       | 1       | 1,187   | 100       | 3              | 23,159  | 100       | 5              | 28,032 | 100       | 938              | 5,633  | 24        |
| 8/27       | 0       | 1,187   | 100       | 4              | 23,163  | 100       | 1              | 28,033 | 100       | 1,024            | 6,657  | 28        |
| 8/28       | 0       | 1,187   | 100       | 4              | 23,167  | 100       | 1              | 28,034 | 100       | 745              | 7,402  | 31        |
| 8/29       | 0       | 1,187   | 100       | 1              | 23,168  | 100       | 2              | 28,036 | 100       | 412              | 7,814  | 33        |
| 8/30       | 0       | 1,187   | 100       | 3              | 23,171  | 100       | 3              | 28,039 | 100       | 637              | 8,451  | 36        |
| 8/31       | 0       | 1,187   | 100       | 1              | 23,172  | 100       | 2              | 28,041 | 100       | 8                | 8,459  | 36        |
| 9/01       | 0       | 1,187   | 100       | 5              | 23,177  | 100       | 5              | 28,046 | 100       | 4,400            | 12,859 | 54        |
| 9/02       | 1 °     | 1,188   | 100       | 5 °            | 23,182  | 100       | 4 <sup>c</sup> | 28,050 | 100       | 987 °            | 13,846 | 58        |
| 9/03       | 1 °     | 1,189   | 100       | 5 °            | 23,187  | 100       | 4 <sup>c</sup> | 28,054 | 100       | 859 °            | 14,705 | 62        |
| 9/04       | 0 °     | 1,189   | 100       | 5 °            | 23,192  | 100       | 4 <sup>c</sup> | 28,058 | 100       | 785 °            | 15,490 | 65        |
| 9/05       | 0 °     | 1,189   | 100       | 4 <sup>c</sup> | 23,196  | 100       | 3 °            | 28,061 | 100       | 797 °            | 16,287 | 69        |
| 9/06       | 0 °     | 1,189   | 100       | 4 <sup>c</sup> | 23,200  | 100       | 3 °            | 28,064 | 100       | 844 °            | 17,131 | 72        |
| 9/07       | 0 °     | 1,189   | 100       | 4 <sup>c</sup> | 23,204  | 100       | 3 °            | 28,067 | 100       | 745 °            | 17,876 | 75        |
| 9/08       | 0 °     | 1,189   | 100       | 5 °            | 23,209  | 100       | 3 °            | 28,070 | 100       | 710 <sup>c</sup> | 18,586 | 78        |
| 9/09       | 0 °     | 1,189   | 100       | 4 <sup>c</sup> | 23,213  | 100       | 3 °            | 28,073 | 100       | 656 °            | 19,242 | 81        |
| 9/10       | 0 °     | 1,189   | 100       | 4 <sup>c</sup> | 23,217  | 100       | 3 °            | 28,076 | 100       | 620 °            | 19,862 | 84        |
| 9/11       | 0 °     | 1,189   | 100       | 4 <sup>c</sup> | 23,221  | 100       | 2 °            | 28,078 | 100       | 619 °            | 20,481 | 86        |
| 9/12       | 0 °     | 1,189   | 100       | 4 <sup>c</sup> | 23,225  | 100       | 2 °            | 28,080 | 100       | 592 °            | 21,073 | 89        |
| 9/13       | $0^{c}$ | 1,189   | 100       | 3 °            | 23,228  | 100       | 2 °            | 28,082 | 100       | 497 °            | 21,570 | 91        |
| 9/14       | $0^{c}$ | 1,189   | 100       | 3 °            | 23,231  | 100       | 2 °            | 28,084 | 100       | 491 °            | 22,061 | 93        |
| 9/15       | $0^{c}$ | 1,189   | 100       | 3 °            | 23,234  | 100       | 2 °            | 28,086 | 100       | 463 °            | 22,524 | 95        |
| 9/16       | $0^{c}$ | 1,189   | 100       | 3 °            | 23,237  | 100       | 2 °            | 28,088 | 100       | 421 °            | 22,945 | 97        |
| 9/17       | $0^{c}$ | 1,189   | 100       | 3 °            | 23,240  | 100       | 2 °            | 28,090 | 100       | 438 °            | 23,383 | 99        |
| 9/18       | 0 °     | 1,189   | 100       | 3 °            | 23,243  | 100       | 1 °            | 28,091 | 100       | 319 °            | 23,702 | 100       |
| Observed   | 1,189   |         |           | 23,243         |         |           | 28,091         |        |           | 23,702           |        |           |
| Estimated  | 21      |         |           | 214            |         |           | 418            |        |           | 11,809           |        |           |
| % Observed | 98.2    |         |           | 99.1           |         |           | 98.5           |        |           | 50.2             |        |           |

Note: Shaded areas indicate 80% of the run. Outside boxes indicate the estimated central 50% of passage. Bold boxes indicate the date that the estimated cumulative 50% passage occurred.

Partial count, a breach occurred in the weir; missed passage was not estimated.
 Partial count, flooding occurred; missed passage was estimated.

<sup>&</sup>lt;sup>c</sup> Weir was not operational, daily passage was estimated.

Table 2.—Daily, cumulative, and cumulative percent passage of pink salmon and Dolly Varden at the Middle Fork Goodnews weir, 2013.

|      |       | Pink Salmo |           |       | Dolly Vard |           | White |     | Rainbow |     |
|------|-------|------------|-----------|-------|------------|-----------|-------|-----|---------|-----|
| Date | Daily | Cum        | % passage | Daily | Cum        | % passage | Daily | Cum | Daily   | Cum |
| 6/24 | 0     | 0          | 0         | 1     | 1          | 0         | 0     | 0   | 0       | 0   |
| 6/25 | 0     | 0          | 0         | 1     | 2          | 0         | 1     | 1   | 0       | 0   |
| 6/26 | 0     | 0          | 0         | 3     | 5          | 0         | 1     | 2   | 0       | 0   |
| 6/27 | 0     | 0          | 0         | 0     | 5          | 0         | 8     | 10  | 0       | 0   |
| 6/28 | 0     | 0          | 0         | 0     | 5          | 0         | 4     | 14  | 8       | 8   |
| 6/29 | 0     | 0          | 0         | 0     | 5          | 0         | 1     | 15  | 0       | 8   |
| 6/30 | 0     | 0          | 0         | 2     | 7          | 0         | 4     | 19  | 2       | 10  |
| 7/01 | 0     | 0          | 0         | 1     | 8          | 0         | 1     | 20  | 0       | 10  |
| 7/02 | 0     | 0          | 0         | 0     | 8          | 0         | 0     | 20  | 0       | 10  |
| 7/03 | 0     | 0          | 0         | 2     | 10         | 0         | 1     | 21  | 1       | 11  |
| 7/04 | 0     | 0          | 0         | 0     | 10         | 0         | 0     | 21  | 0       | 11  |
| 7/05 | 0     | 0          | 0         | 2     | 12         | 0         | 0     | 21  | 0       | 11  |
| 7/06 | 0     | 0          | 0         | 0     | 12         | 0         | 0     | 21  | 0       | 11  |
| 7/07 | 0     | 0          | 0         | 0     | 12         | 0         | 0     | 21  | 0       | 11  |
| 7/08 | 1     | 1          | 0         | 6     | 18         | 0         | 0     | 21  | 0       | 11  |
| 7/09 | 0 a   | 1          | 0         | 0 a   | 18         | 0         | 0 a   | 21  | 0 a     | 11  |
| 7/10 | 8     | 9          | 2         | 8     | 26         | 1         | 0     | 21  | 0       | 11  |
| 7/11 | 6     | 15         | 3         | 5     | 31         | 1         | 0     | 21  | 0       | 11  |
| 7/12 | 16    | 31         | 6         | 3     | 34         | 1         | 0     | 21  | 0       | 11  |
| 7/13 | 11    | 42         | 8         | 2     | 36         | 1         | 0     | 21  | 0       | 11  |
| 7/14 | 11    | 53         | 10        | 3     | 39         | 1         | 0     | 21  | 0       | 11  |
| 7/15 | 20    | 73         | 14        | 144   | 183        | 4         | 6     | 27  | 0       | 11  |
| 7/16 | 57    | 130        | 25        | 330   | 513        | 10        | 0     | 27  | 3       | 14  |
| 7/17 | 25    | 155        | 29        | 446   | 959        | 19        | 8     | 35  | 1       | 15  |
| 7/18 | 20    | 175        | 33        | 516   | 1,475      | 29        | 0     | 35  | 0       | 15  |
| 7/19 | 17    | 192        | 36        | 292   | 1,767      | 34        | 1     | 36  | 7       | 22  |
| 7/20 | 38    | 230        | 43        | 835   | 2,602      | 50        | 7     | 43  | 5       | 27  |
| 7/21 | 33    | 263        | 50        | 666   | 3,268      | 63        | 29    | 72  | 3       | 30  |
| 7/22 | 24    | 287        | 54        | 351   | 3,619      | 70        | 27    | 99  | 0       | 30  |
| 7/23 | 51    | 338        | 64        | 312   | 3,931      | 76        | 19    | 118 | 2       | 32  |
| 7/24 | 42    | 380        | 72        | 396   | 4,327      | 84        | 0     | 118 | 0       | 32  |
| 7/25 | 3     | 383        | 72        | 120   | 4,447      | 86        | 4     | 122 | 3       | 35  |

-continued-

Table 2.–Page 2 of 3.

| _    |                | Pink Sal | mon       |                 | Dolly Var | rden      | Whitefi        | ish | Rainbow Tro    | ut  |
|------|----------------|----------|-----------|-----------------|-----------|-----------|----------------|-----|----------------|-----|
| Date | Daily          | Cum      | % passage | Daily           | Cum       | % passage | Daily          | Cum | Daily          | Cum |
| 7/26 | 14             | 397      | 75        | 105             | 4,552     | 88        | 12             | 134 | 3              | 38  |
| 7/27 | 6              | 403      | 76        | 142             | 4,694     | 91        | 16             | 150 | 0              | 38  |
| 7/28 | 2              | 405      | 76        | 42              | 4,736     | 92        | 2              | 152 | 2              | 40  |
| 7/29 | 5              | 410      | 77        | 93              | 4,829     | 94        | 5              | 157 | 4              | 44  |
| 7/30 | 4              | 414      | 78        | 37              | 4,866     | 94        | 2              | 159 | 1              | 45  |
| 7/31 | 3              | 417      | 79        | 49              | 4,915     | 95        | 0              | 159 | 0              | 45  |
| 8/01 | 5              | 422      | 80        | 38              | 4,953     | 96        | 0              | 159 | 0              | 45  |
| 8/02 | 4              | 426      | 80        | 32              | 4,985     | 97        | 3              | 162 | 1              | 46  |
| 8/03 | 4              | 430      | 81        | 13              | 4,998     | 97        | 0              | 162 | 0              | 46  |
| 8/04 | 3              | 433      | 82        | 28              | 5,026     | 97        | 2              | 164 | 1              | 47  |
| 8/05 | 6              | 439      | 83        | 44              | 5,070     | 98        | 3              | 167 | 0              | 47  |
| 8/06 | 5              | 444      | 84        | 39              | 5,109     | 99        | 0              | 167 | 2              | 49  |
| 8/07 | 11             | 455      | 86        | 19              | 5,128     | 99        | 0              | 167 | 0              | 49  |
| 8/08 | 5 <sup>a</sup> | 460      | 87        | 17 <sup>a</sup> | 5,145     | 100       | 1 <sup>a</sup> | 168 | 1 <sup>a</sup> | 50  |
| 8/09 | 0 b            | 460      | 87        | О в             | 5,145     | 100       | О в            | 168 | $0^{-b}$       | 50  |
| 8/10 | 0 в            | 460      | 87        | О в             | 5,145     | 100       | О в            | 168 | $0^{-b}$       | 50  |
| 8/11 | 0 в            | 460      | 87        | О в             | 5,145     | 100       | О в            | 168 | $0^{-b}$       | 50  |
| 8/12 | 0 b            | 460      | 87        | О в             | 5,145     | 100       | О в            | 168 | $0^{-b}$       | 50  |
| 8/13 | О в            | 460      | 87        | $0^{-b}$        | 5,145     | 100       | 0 в            | 168 | $0^{-b}$       | 50  |
| 8/14 | 0 b            | 460      | 87        | 0 b             | 5,145     | 100       | 0 b            | 168 | 0 b            | 50  |
| 8/15 | 0 b            | 460      | 87        | 0 b             | 5,145     | 100       | 0 b            | 168 | 0 b            | 50  |
| 8/16 | 0 b            | 460      | 87        | $0^{-b}$        | 5,145     | 100       | 0 b            | 168 | О в            | 50  |
| 8/17 | 0 <sup>a</sup> | 460      | 87        | 0 <sup>a</sup>  | 5,145     | 100       | 0 a            | 168 | $0^{-a}$       | 50  |
| 8/18 | 14             | 474      | 89        | 4               | 5,149     | 100       | 0              | 168 | 0              | 50  |
| 8/19 | 5              | 479      | 90        | 2               | 5,151     | 100       | 1              | 169 | 0              | 50  |
| 8/20 | 17             | 496      | 94        | 2               | 5,153     | 100       | 0              | 169 | 0              | 50  |
| 8/21 | 4              | 500      | 94        | 0               | 5,153     | 100       | 0              | 169 | 0              | 50  |
| 8/22 | 2              | 502      | 95        | 1               | 5,154     | 100       | 0              | 169 | 0              | 50  |
| 8/23 | 3              | 505      | 95        | 0               | 5,154     | 100       | 3              | 172 | 1              | 51  |
| 8/24 | 1              | 506      | 95        | 0               | 5,154     | 100       | 2              | 174 | 0              | 51  |
| 8/25 | 2              | 508      | 96        | 0               | 5,154     | 100       | 0              | 174 | 0              | 51  |
| 8/26 | 3              | 511      | 96        | 3               | 5,157     | 100       | 0              | 174 | 0              | 51  |
| 8/27 | 4              | 515      | 97        | 1               | 5,158     | 100       | 0              | 174 | 0              | 51  |
| 8/28 | 3              | 518      | 98        | 2               | 5,160     | 100       | 2              | 176 | 0              | 51  |

-continued-

Table 2.—Page 3 of 3.

|       |       | Pink Salme | on        |       | Dolly Vard | en        | Whitefis | sh  | Rainbow | Trout |
|-------|-------|------------|-----------|-------|------------|-----------|----------|-----|---------|-------|
| Date  | Daily | Cum        | % passage | Daily | Cum        | % passage | Daily    | Cum | Daily   | Cum   |
| 8/29  | 1     | 519        | 98        | 1     | 5,161      | 100       | 0        | 176 | 0       | 51    |
| 8/30  | 6     | 525        | 99        | 1     | 5,162      | 100       | 0        | 176 | 0       | 51    |
| 8/31  | 1     | 526        | 99        | 0     | 5,162      | 100       | 0        | 176 | 0       | 51    |
| 9/01  | 4     | 530        | 100       | 1     | 5,163      | 100       | 3        | 179 | 0       | 51    |
| 9/02  | О в   | 530        | 100       | 0 b   | 5,163      | 100       | 0 b      | 179 | 0 b     | 51    |
| Total | 530   |            |           | 5,163 |            |           | 179      |     | 51      |       |

Note: Shaded areas indicate 80% of the run. Outside boxes indicate the estimated central 50% of passage. Bold boxes indicate the date that the estimated cumulative 50% passage occurred.

Partial day counts because of a breach in weir; no estimates were made.
 The weir was not operational; daily passage was not estimated.

Table 3.-Age and sex composition and mean length (mm) of Chinook salmon escapement at the Middle Fork Goodnews River weir, 2013.

|             |                    |    |     |       |      | Bro   | ood Year ( | (Age) |      |    |     |    |     |       | ,     |
|-------------|--------------------|----|-----|-------|------|-------|------------|-------|------|----|-----|----|-----|-------|-------|
|             |                    | 20 | 010 | 200   | )9   | 200   | )8         | 200   | 7    | 20 | 06  | 20 | 006 |       |       |
|             |                    | 1  | .1  | 1.2   | 2    | 1.3   | 3          | 1.4   | ļ    | 1. | .5  | 2  | 2.4 | To    | tal   |
| Sample Size |                    | N  | %   | N     | %    | N     | %          | N     | %    | N  | %   | N  | %   | N     | %     |
| 175         | Male               | 6  | 0.5 | 176   | 14.8 | 143   | 12.0       | 190   | 16.0 | 0  | 0.0 | 0  | 0.0 | 515   | 43.3  |
|             | Female             | 0  | 0.0 | 0     | 0.0  | 124   | 10.4       | 533   | 44.9 | 12 | 1.0 | 5  | 0.5 | 674   | 56.7  |
|             | Total              | 6  | 0.5 | 176   | 14.8 | 267   | 22.4       | 723   | 60.8 | 12 | 1.0 | 5  | 0.5 | 1,189 | 100.0 |
|             | 95% C.I. (± %)     |    | 0.9 |       | 5.2  |       | 6.2        |       | 7.2  |    | 1.8 |    | 0.8 |       | 0.3   |
|             | Male Mean Length   | 3  | 80  | 522   | 2    | 75    | 3          | 86    | 5    |    |     |    |     |       |       |
|             | SE                 |    |     | 10    | )    | 24    | ļ          | 21    |      |    |     |    |     |       |       |
|             | Range              |    |     | 421-6 | 550  | 564-8 | 866        | 726-1 | 060  |    |     |    |     |       |       |
|             | n                  |    | 1   | 26    | Ó    | 19    | )          | 25    |      |    |     |    |     |       |       |
|             | Female Mean Length |    |     |       |      | 80    | 1          | 87    | 0    | 85 | 52  | 9  | 49  |       |       |
|             | SE                 |    |     |       |      | 11    |            | 5     |      |    |     |    |     |       |       |
|             | Range              |    |     |       |      | 703-8 | 861        | 746-9 | 970  |    |     |    |     |       |       |
|             | n                  |    |     |       |      | 19    | )          | 83    |      | 1  | [   |    | 1   |       |       |

Note: Samples were sufficient for stratification based on proportions of cumulative escapement. A weighted total is presented.

Table 4.-Age and sex composition and mean length (mm) of sockeye salmon escapement at the Middle Fork Goodnews River weir, 2013.

|             |                    |        |         |           | Bro         | od Year(A | .ge)      |            |         |           |              |
|-------------|--------------------|--------|---------|-----------|-------------|-----------|-----------|------------|---------|-----------|--------------|
|             | _                  | 2010   | 2009    | 2009      | 2008        | 2008      | 2007      | 2007       | 2006    | 2006      |              |
|             | _                  | 0.2    | 0.3     | 1.2       | 1.3         | 2.2       | 1.4       | 2.3        | 2.4     | 3.3       | Total        |
| Sample Size |                    | N %    | N %     | N %       | N %         | N %       | N %       | N %        | N %     | N %       | N %          |
| 625         | Male               | 23 0.1 | 47 0.2  | 558 2.4   | 5,151 22.2  | 47 0.2    | 798 3.4   | 2,528 10.9 | 463 2.0 | 533 2.3   | 10,147 43.7  |
|             | Female             | 0.0    | 382 1.6 | 1,013 4.4 | 7,049 30.3  | 673 2.9   | 683 2.9   | 2,449 10.5 | 151 0.6 | 696 3.0   | 13,096 56.3  |
|             | Total              | 23 0.1 | 429 1.8 | 1,571 6.8 | 12,200 52.5 | 719 3.1   | 1,481 6.4 | 4,977 21.4 | 613 2.6 | 1,229 5.3 | 23,243 100.0 |
|             | 95% C.I.           | 0.2    | 1.3     | 2.0       | 4.6         | 1.5       | 2.4       | 3.7        | 1.6     | 2.1       | 0.1          |
|             | Male Mean Length   | 591    | 576     | 507       | 575         | 525       | 608       | 573        | 588     | 553       |              |
|             | SE                 |        | 16      | 5         | 2           | 35        | 2         | 2          | 4       | 10        |              |
|             | Range              |        | 560-592 | 431-543   | 506-618     | 490-559   | 589-633   | 520-621    | 560-613 | 515-600   |              |
|             | n                  | 1      | 2       | 19        | 147         | 2         | 17        | 69         | 10      | 13        |              |
|             | Female Mean Length |        | 530     | 483       | 542         | 474       | 565       | 535        | 570     | 523       |              |
|             | SE                 |        | 5       | 3         | 1           | 10        | 7         | 2          | 3       | 4         |              |
|             | Range              |        | 470-560 | 448-529   | 498-588     | 433-525   | 520-584   | 485-580    | 565-586 | 500-554   |              |
|             | n                  |        | 9       | 36        | 167         | 19        | 17        | 73         | 4       | 20        |              |

*Note*: Samples were sufficient for stratification based on proportions of cumulative escapement. A weighted total is presented.

Table 5.-Age and sex composition and mean length (mm) of chum salmon escapement at the Middle Fork Goodnews River weir, 2013

|             |                  |       | Bı   | ood Year | (Age) |      |     |        |      |
|-------------|------------------|-------|------|----------|-------|------|-----|--------|------|
|             |                  | 200   | )9   | 200      | 8     | 20   | 07  | •'     |      |
|             |                  | 0.3   |      | 0.4      |       | 0.5  |     |        | Tota |
| Sample Size |                  | N     | %    | N        | %     | N    | %   | N      | 9/   |
| 494         | Male             | 4,526 | 16.1 | 10,680   | 38.0  | 418  | 1.5 | 15,624 | 55.0 |
|             | Female           | 4,699 | 16.7 | 7,434    | 26.5  | 334  | 1.2 | 12,467 | 44.  |
|             | Total            | 9,225 | 32.8 | 18,114   | 64.5  | 752  | 2.7 | 28,091 | 100. |
|             | 95% C.I. (± %)   |       | 4.2  |          | 4.3   |      | 1.4 |        | 0.   |
|             | Male Mean Length | 58    | 6    | 600      | 6     | 64   | 11  |        |      |
|             | SE               | 3.3   | 36   | 2.8      | 6     | 13.  | 14  |        |      |
|             | Range            | 503-  | 663  | 502-7    | 798   | 605- | 730 |        |      |
|             | n                | 82    | 2    | 193      | 3     | 8    | }   |        |      |
|             | Female Mean      | 55    | 1    | 570      | 0     | 56   | 66  |        |      |
|             | SE               | 2.9   | 95   | 2.8      | 8     | 14.  | 18  |        |      |
|             | Range            | 499-  | 603  | 493-6    | 593   | 528- | 615 |        |      |
|             | n                | 7     | 7    | 129      | 9     | 5    | 5   |        |      |

Note: Samples were sufficient for stratification based on proportions of cumulative escapement. A weighted total is presented.

Table 6.–Age and sex composition and mean length (mm) of coho salmon escapement at the Middle Fork Goodnews River weir, 2013.

|             |                      | Brood Year (Age) |                 |            |      |         |     |      |     |       |       |
|-------------|----------------------|------------------|-----------------|------------|------|---------|-----|------|-----|-------|-------|
|             |                      | 2010             |                 | 20         | 009  | 2008    |     | 2007 |     |       |       |
|             |                      |                  |                 | 2          | .1   | 3.1     |     | 4.1  |     | Total |       |
| Sample Size |                      | N                | %               | N          | %    | N       | %   | N    | %   | N     | %     |
| 132         | Male                 | 5                | 3.8             | 58         | 43.9 | 1       | 0.8 | 0    | 0.0 | 64    | 48.5  |
|             | Female               | 5                | 3.8             | 60         | 45.5 | 2       | 1.5 | 1    | 0.8 | 68    | 51.5  |
|             | Total                | 10               | 7.6             | 118        | 89.4 | 3       | 2.3 | 1    | 0.8 | 132   | 100.0 |
|             | Male Mean Length 550 |                  | 50              | 5          | 97   | 590     |     |      |     |       |       |
|             | SE                   | 16               |                 |            | 6    |         |     |      |     |       |       |
|             | Range                | 494              | 494-583 406-668 |            | -668 |         |     |      |     |       |       |
|             | n                    | 5 58 1           |                 |            |      |         |     |      |     |       |       |
|             | Female Mean Length   | 5                | 65              | 6          | 02   | 610     |     | 6    | 01  |       |       |
|             | SE 7                 |                  | 7               |            | 4    | 10      |     |      |     |       |       |
|             | Range                | 542-585          |                 | 488-665    |      | 600-620 |     |      |     |       |       |
|             | n                    |                  | 5               | $\epsilon$ | 50   |         | 2   |      | 1   |       |       |

Note: Samples were sufficient for stratification based on proportions of cumulative escapement. A weighted total is not available.

Table 7.-Daily weather and hydrological at the Middle Fork Goodnews River weir, 2013.

|      | Wind          | Precipitation | Air Temp. | Water Temp | Cloud Cover     | Water Level |
|------|---------------|---------------|-----------|------------|-----------------|-------------|
| Date | (Dir./Speed)  | mm/24hr       | °C        | °C         | %/altitude (ft) | (cm)        |
| 6/21 | SE/10         | 0.0           | 8         | 11         | 100/2000        | 8.0         |
| 6/22 | SE/20         | 2.5           | 8         | 11         | fog             | 6.0         |
| 6/23 | SE/5          | 1.8           | 9         | 8          | 100/3000        | 24.0        |
| 6/24 | calm          | 0.3           | 10        | 8          | 100/3000        | 17.0        |
| 6/25 | calm          | 0.0           | 14        | 9          | 50/4000         | 14.0        |
| 6/26 | calm          | 0.00          | 15        | 10         | 40/5000         | 10          |
| 6/27 | calm          | 0.00          | 8         | 11         | 10\4000         | 8           |
| 6/28 | calm          | 0.00          | 12        | 10         | 100/4000        | 7           |
| 6/29 | calm          | 0.00          | 10        | 10         | 75/4000         | 5           |
| 6/30 | SE/5          | 10.16         | 8         | 9          | 100/1000        | 5           |
| 7/01 | calm          | 6.10          | 8         | 9          | 100/1000        | 13          |
| 7/02 | calm          | 3.30          | 7         | 8          | 100/1000        | 15          |
| 7/03 | calm          | 2.03          | 8         | 8          | 100/1000        | 18          |
| 7/04 | SW/5          | 5.08          | 6         | 8          | 100/500         | 23          |
| 7/05 | calm          | 0.00          | 8         | 8          | 100/1500        | 23          |
| 7/06 | SE/5          | 3.81          | 7         | 8          | 100/500         | 21          |
| 7/07 | W/5           | 9.91          | 8         | 8          | 100/1500        | 24          |
| 7/08 | calm          | 1.78          | 7         | 8          | 100/500         | 23          |
| 7/09 | calm          | 9.65          | 9         | 8          | 30/4000         | 25          |
| 7/10 | calm          | 0.00          | 6         | 8          | 20/4000         | 25          |
| 7/11 | calm          | 0.00          | 8         | 9          | 10\5000         | 20          |
| 7/12 | calm          | 0.00          | 8         | 9          | 10\5000         | 17          |
| 7/13 | E/5           | 0.00          | 13        | 9          | 30/10000        | 14          |
| 7/14 | W/5           | 0.00          | 11        | 9          | 100/500         | 9           |
| 7/15 | calm          | 5.08          | 10        | 9          | 100/1500        | 9.0         |
| 7/16 | calm          | 2.03          | 9         | 8          | 100/800         | 7           |
| 7/17 | calm          | 7.62          | 10        | 8          | 100/500         | 8           |
| 7/18 | calm          | 4.57          | 12        | 9          | fog             | 9           |
| 7/19 | calm          | 0.76          | 10        | 9          | fog             | 8           |
| 7/20 | calm          | trace         | 10        | 9          | 100/500         | 7           |
| 7/21 | calm          | 0.00          | 10        | 10         | 95/1000         | 6           |
| 7/22 | calm          | 0.00          | 15        | 12         | 30/10000        | -2          |
| 7/23 | N/2           | 0.00          | 18        | 13         | 80/1500         | -2          |
| 7/24 | N/5           | 0.00          | 16        | 12         | 80/1500         | -2          |
| 7/25 | calm          | 0.00          | 16        | 12         | 0               | -2          |
| 7/26 | calm          | 0.00          | 20        | 13         | 0               | <u>-</u> 4  |
| 7/27 | SW/2          | 0.00          | 15        | 12         | fog             | -5          |
| 7/28 | SW/3          | 0.00          | 15        | 9          | 100/1000        | -6          |
| 7/29 | SW/1          | 0.00          | 16        | 12         | 50/1500         | -6          |
| 7/30 | calm          | 0.00          | 16        | 14         | 50/1000         | -8          |
| 7/31 | SW/3          | 0.00          | 16        | 14         | 90/1500         | -9          |
| 8/01 | SW/3          | 5.08          | 13        | 10         | 100/500         | -8          |
| 8/02 | E/5           | 8.38          | 12        | 9          | 100/500         | -5          |
| 8/03 | calm          | 11.18         | 14        | 9          | 100/500         | 0           |
| 8/04 | SE/10         | 7.62          | 16        | 12         | 100/300         | 0           |
| 8/04 | SE/10<br>SE/5 | 9.65          | 13        | 11         | 100/800         | -2          |
| 8/05 | E/10          | 13.72         | 13        | 11         | 100/300         | 1           |
| 8/00 | calm          | 25.40         | 12        | 11         | 100/1000        | 15          |
| 8/07 | E/5           | 7.87          | 11        | 10         | 100/1000        | 28          |
|      |               |               |           |            |                 |             |
| 8/09 | SE/5          | 3.30          | 10        | 10         | 100/1000        | 42          |

-continued-

Table 7.–Page 2 of 2.

|         | Wind         | Precipitation | Air Temp. | Water Temp | Cloud Cover     | Water Level |
|---------|--------------|---------------|-----------|------------|-----------------|-------------|
| Date    | (Dir./Speed) | mm/24hr       | °C        | °C         | %/altitude (ft) | (cm)        |
| 8/10    | calm         | 5.6           | 10        | 9          | 100/1000        | 45.0        |
| 8/11    | calm         | 1.8           | 12        | 10         | 100/1000        | 50.0        |
| 8/12    | calm         | 0.0           | 8         | 9          | fog             | 48.0        |
| 8/13    | E/15         | 0.51          | 13        | 10         | 80/2000         | 42          |
| 8/14    | SE/15        | 2.54          | 11        | 10         | 100/1000        | 40          |
| 8/15    | calm         | 4.57          | 12        | 9          | 100/1500        | 43          |
| 8/16    | calm         | 2.79          | 13        | 10         | 100/1000        | 40          |
| 8/17    | calm         | 2.03          | 13        | 10         | 90/1500         | 40          |
| 8/18    | calm         | 5.33          | 11        | 9          | 50/1500         | 36          |
| 8/19    | calm         | 2.79          | 12        | 10         | 100/1000        | 35          |
| 8/20    | calm         | 0.00          | 15        | 10         | 100/1000        | 25          |
| 8/21    | E/10         | 4.32          | 12        | 10         | 100/500         | 22          |
| 8/22    | E/5          | 4.06          | 11        | 9          | 100/500         | 22          |
| 8/23    | calm         | 2.29          | 14        | 10         | 100/1000        | 21          |
| 8/24    | calm         | 0.00          | 10        | 9          | 10/1000         | 17          |
| 8/25    | SE/10        | 12.45         | 11        | 10         | 100/1000        | 18          |
| 8/26    | calm         | 2.29          | 12        | 10         | 100/500         | 18          |
| 8/27    | SW/5         | 3.05          | 10        | 10         |                 | 17          |
| 8/28    | calm         | 0.76          | 10        | 9          | 100/2000        | 18          |
| 8/29    | E/5          | 0.00          | 13        | 10         | 80/2000         | 16          |
| 8/30    | calm         | 0.00          | 7         | 9          | 80/2500         | 15          |
| 8/31    | calm         | 0.00          | 8         | 9          | 100/1000        | 12          |
| 9/01    | _            | trace         | _         | _          | _               | 28          |
| 9/02    | SE/5         | 31.75         | 12        | 10         | 100/1000        | 40          |
| 9/03    | E/5          | 10.67         | 11        | 10         | 100/1000        | 78          |
| 9/04    | S/5          | 7.87          | 7         | 9          | 90/2000         | 82          |
| 9/05    | calm         | 1.27          | 10        | 9          | 50/3000         | 80          |
| 9/06    | calm         | 1.52          | 8         | 9          | 20/5000         | 73          |
| 9/07    | calm         | 1.02          | 5         | 9          | 90/2500         | 65          |
| 9/08    | calm         | 1.02          | 7         | 9          | 80/3000         | 59          |
| 9/09    | calm         | 7.62          | 7         | 9          | 100/3000        | 52          |
| 9/10    | W/10         | 2.79          | 6         | 8          | 100/500         | 50          |
| 9/11    | calm         | 2.03          | 6         | 7          | 100/2500        | 45          |
| 9/12    | E/10         | 2.79          | 7         | 7          | 100/2000        | 40          |
| 9/13    | calm         | 2.29          | 7         | 8          | 90/2000         | 38          |
| 9/14    | calm         | 0.00          | 5         | 7          | 100/2000        | 32          |
| 9/15    | calm         | 0.76          | 7         | 8          | 90/3000         | 24          |
| Min     |              | 0.00          | 5         | 7          |                 | -9          |
| Max     |              | 31.75         | 20        | 14         |                 | 82          |
| Average |              | 3.52          | 11        | 10         |                 | 22          |

Note: Weather conditions are recorded at 1000 hours each day.

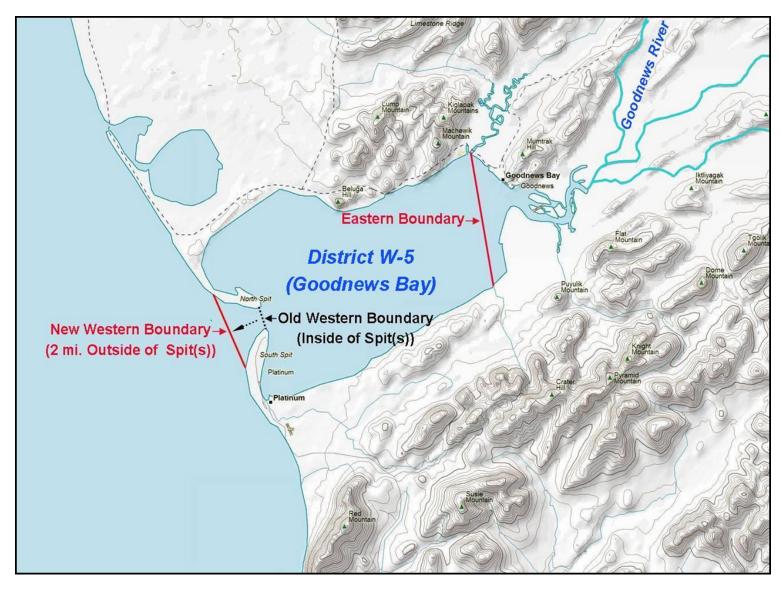



Figure 1.-Commercial fishing District W-5 (Goodnews Bay), Kuskokwim Bay, Alaska.

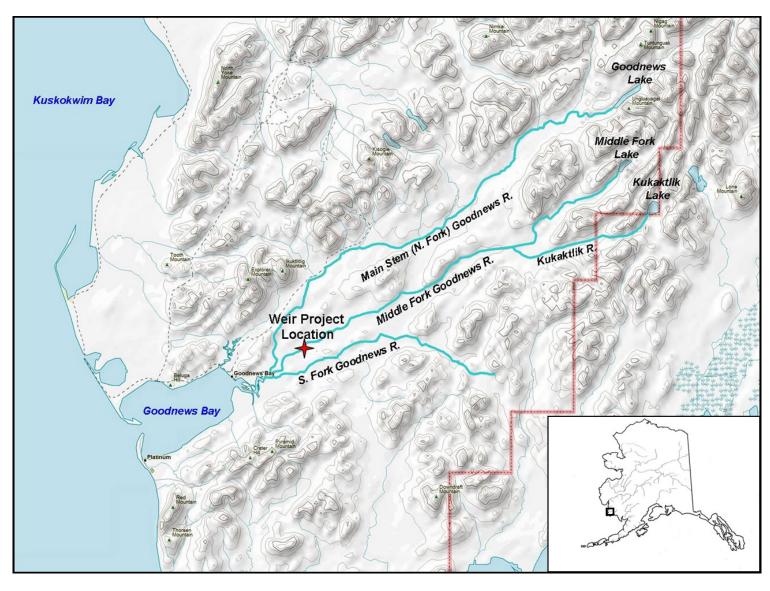



Figure 2.-The Goodnews River drainage, Kuskokwim Bay, Alaska.

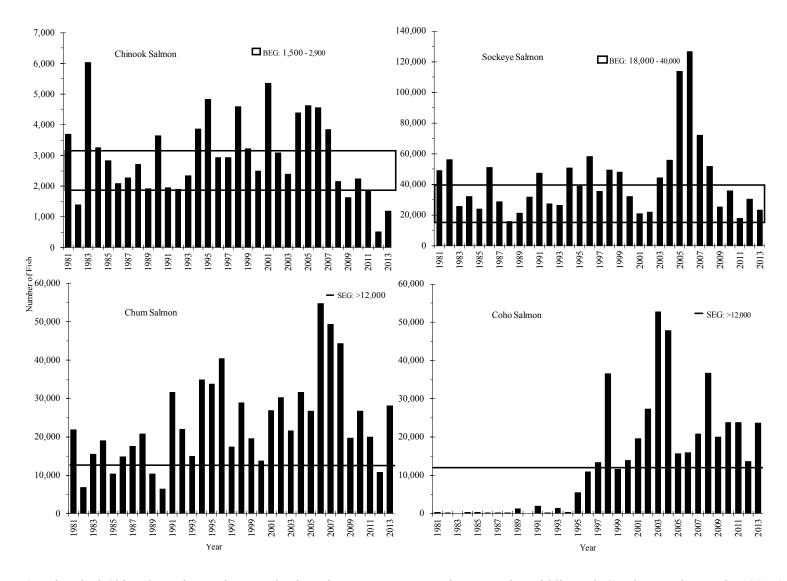



Figure 3.-Historical Chinook, sockeye, chum, and coho salmon escapement estimates at the Middle Fork Goodnews River weir, 1981–2013.

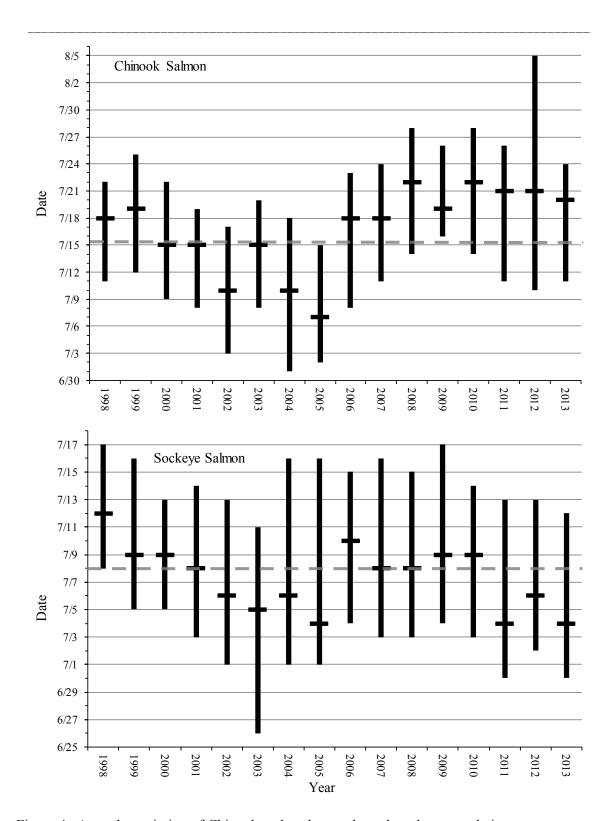



Figure 4.—Annual run timing of Chinook and sockeye salmon based on cumulative percent passage at the Middle Fork Goodnews River weir, 1998–2013.

*Note*: Solid lines represent the dates when the central 50% of the run passed; cross-bars represent the median passage date and dashed line represent historic median (1998–2012).

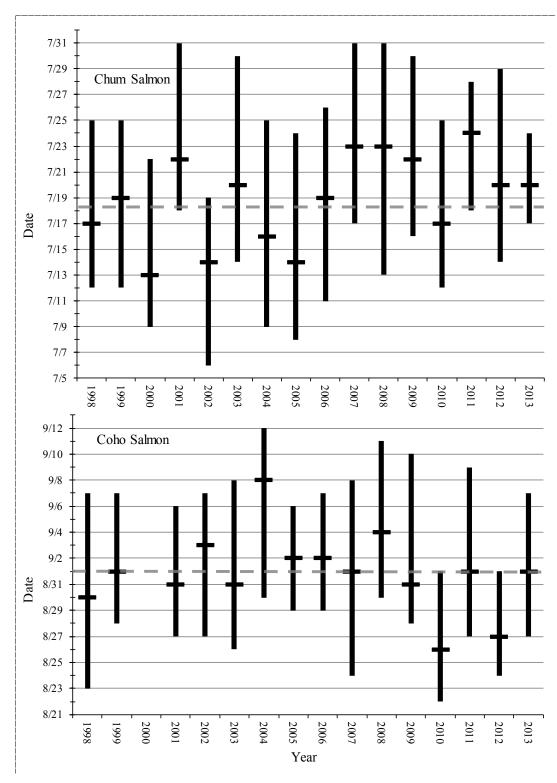



Figure 5.–Annual run timing of chum and coho salmon based on cumulative percent passage at the Middle Fork Goodnews River weir, 1998–2013.

*Note*: Solid lines represent the dates when the central 50% of the run passed; cross-bars represent the median passage date and dash line represent historic median (1998–2012).

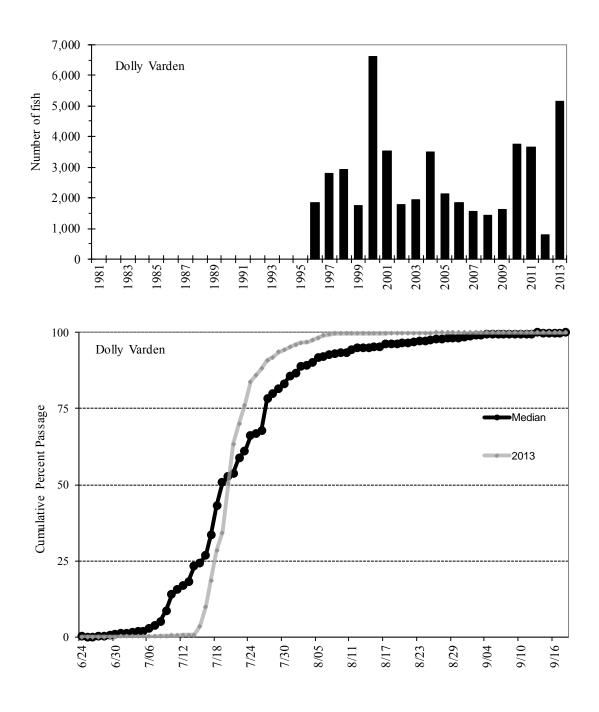



Figure 6.–Historical Dolly Varden char escapement estimate, 1981–2013, cumulative percent passage of Dolly Varden char 2013, and historical median at the Middle Fork Goodnews River weir.

# APPENDIX A: HISTORICAL MIDDLE FORK GOODNEWS RIVER ESCAPEMENT PROJECTS, 1981–2013.

Appendix A1.-Historical Middle Fork Goodnews River escapement projects, 1981-2013.

|          |                                | Dates of    |                    |                     |                     |                   |                     | Dolly              |
|----------|--------------------------------|-------------|--------------------|---------------------|---------------------|-------------------|---------------------|--------------------|
| Year     | Method                         | Operation   | Chinook            | Sockeye             | Chum                | Pink <sup>a</sup> | Coho                | Varden             |
| 1981     | Counting Tower <sup>b</sup>    | 6/13-8/9    | 3,688              | 49,108              | 21,827              | c                 | 356 <sup>d</sup>    | С                  |
| 1982     | Counting Tower <sup>b</sup>    | 6/23 - 8/3  | 1,395              | 56,255              | 6,767               | c                 | 91 <sup>d</sup>     | c                  |
| 1983     | Counting Tower <sup>b</sup>    | 6/11-7/28   | 6,027              | 25,816              | 15,548              | c                 | $0^{d}$             | c                  |
| 1984     | Counting Tower <sup>b</sup>    | 6/15-7/31   | 3,260              | 32,053              | 19,003              | c                 | 249 <sup>d</sup>    | c                  |
| 1985     | Counting Tower <sup>b</sup>    | 6/27-7/31   | 2,831              | 24,131              | 10,367              | c                 | 282 <sup>d</sup>    | c                  |
| 1986     | Counting Tower <sup>b</sup>    | 6/16-7/24   | 2,080              | 51,069              | 14,764              | c                 | 163 <sup>d</sup>    | c                  |
| 1987     | Counting Tower <sup>b</sup>    | 6/22-7/30   | 2,272              | 28,871              | 17,517              | c                 | 62 <sup>d</sup>     | c                  |
| 1988     | Counting Tower <sup>b</sup>    | 6/23-7/30   | 2,712              | 15,799              | 20,799              | c                 | 6 <sup>d</sup>      | c                  |
| 1989     | Counting Tower <sup>b</sup>    | 6/27-7/31   | 1,915              | 21,186              | 10,380              | c                 | 1,212 <sup>d</sup>  | c                  |
| 1990     | Counting Tower <sup>b</sup>    | 6/20 - 7/31 | 3,636              | 31,679              | 6,410               | c                 | $0^{d}$             | c                  |
| 1991     | Fixed Picket Weir <sup>e</sup> | 6/29 - 8/23 | 1,952              | 47,397              | 31,644              | 1,428             | 1,978 <sup>d</sup>  | c                  |
| 1992     | Fixed Picket Weir <sup>e</sup> | 6/21-8/4    | 1,905              | 27,268              | 22,023              | 22,601            | 150 <sup>d</sup>    | c                  |
| 1993     | Fixed Picket Weir <sup>e</sup> | 6/23-8/18   | 2,349              | 26,452              | 14,952              | 318               | 1,451 <sup>d</sup>  | c                  |
| 1994     | Fixed Picket Weir <sup>e</sup> | 6/23-8/9    | 3,856              | 50,801              | 34,849              | 38,705            | 309 <sup>d</sup>    | c                  |
| 1995     | Fixed Picket Weir <sup>e</sup> | 6/19-8/28   | 4,836              | 39,009              | 33,699              | 330               | 5,415 <sup>d</sup>  | c                  |
| 1996     | Fixed Picket Weir <sup>e</sup> | 6/19-8/23   | 2,931              | 58,290              | 40,450              | 20,105            | 10,869 <sup>d</sup> | 1,829 <sup>d</sup> |
| 1997     | Fixed/R. Board Weir            | 6/12-9/17   | 2,937              | 35,530              | 17,369              | 940               | 13,413              | 2,808              |
| 1998     | R. Board Weir                  | 7/4-9/17    | 4,584 <sup>d</sup> | 49,513 <sup>d</sup> | 28,832 <sup>d</sup> | 10,376            | 36,596              | 2,915              |
| 1999     | R. Board Weir                  | 6/25-9/26   | 3,221              | 48,205              | 19,513              | 914               | 11,545              | 1,761              |
| 2000     | R. Board Weir                  | 7/2-8/27    | 2,500 <sup>d</sup> | 32,341 <sup>d</sup> | 13,791 <sup>d</sup> | 0                 | 13,907              | 6,616              |
| 2001     | R. Board Weir                  | 6/26-9/30   | 5,351              | 21,024              | 26,820              | 5,405             | 19,626              | 3,535              |
| 2002     | R. Board Weir                  | 6/25-9/18   | 3,085              | 22,101              | 30,300              | 0                 | 27,364              | 1,770              |
| 2003     | R. Board Weir                  | 6/18-9/18   | 2,389              | 44,387              | 21,637              | 1,921             | 52,810              | 1,949              |
| 2004     | R. Board Weir                  | 6/21-9/20   | 4,388              | 55,926              | 31,616              | 21,633            | 47,917              | 3,492              |
| 2005     | R. Board Weir                  | 6/26-9/8    | 4,633              | 113,809             | 26,690              | 5,926             | 15,683              | 2,128              |
| 2006     | R. Board Weir                  | 6/26-9/7    | 4,559              | 126,772             | 54,699              | 18,432            | 15,969              | 1,858              |
| 2007     | R. Board Weir                  | 6/25-9/10   | 3,852              | 72,282              | 49,285              | 4,819             | 20,767              | 1,549              |
| 2008     | R. Board Weir                  | 7/02-9/15   | 2,158              | 51,763              | 44,310              | 9,807             | 36,663              | 1,416              |
| 2009     | R. Board Weir                  | 6/28-9/21   | 1,630              | 25,465              | 19,715              | 714               | 20,000              | 1,608              |
| 2010     | R. Board Weir                  | 6/25-9/18   | 2,244              | 35,762              | 26,687              | 3,444             | 23,839              | 3,757              |
| 2011     | R. Board Weir                  | 6/25-9/19   | 1,861              | 17,946              | 19,974              | 1,394             | 23,826              | 3,667              |
| 2012     | R. Board Weir                  | 6/29-9/3    | 513                | 30,472              | 10,723              | 6,316             | 13,679              | 798                |
| 2013     | R. Board Weir                  | 6/24-9/1    | 1,189              | 23,243              | 28,091              | 530               | 23,702              | 5,160              |
| Average  | e (2003–2012)                  |             | 2,823              | 57,458              | 30,534              | 7,441             | 27,115              | 2,222              |
| Historic | al Average                     |             | 3,048              | 42,765              | 23,842              | 7,979             | 24,600              | 2,556              |

<sup>&</sup>lt;sup>a</sup> Picket spacing of the weir panels allows pink salmon to freely pass through the weir unobserved.

b Project located approximately 500 yards upriver from current weir location.

<sup>&</sup>lt;sup>c</sup> Species not enumerated during project operations.

d No counts or incomplete counts as the project was not operational during a large portion of species migration.

<sup>&</sup>lt;sup>e</sup> Fixed picket weir operated in the same location as the current weir.